6533b85ffe1ef96bd12c133d
RESEARCH PRODUCT
Impact of the terrestrial reference frame on the determination of the celestial reference frame.
Maria KarbonSantiago BeldaTobias Nilssonsubject
lcsh:QB275-343010504 meteorology & atmospheric sciencesEpoch (astronomy)lcsh:Geodesylcsh:QC801-809Kalman filter010502 geochemistry & geophysicsGeodesyMissing data01 natural sciencesGeocentric coordinateslcsh:Geophysics. Cosmic physicsGeophysicsPosition (vector)Computers in Earth SciencesTerrestrial reference frameLinear least squares0105 earth and related environmental sciencesEarth-Surface ProcessesReference frameMathematicsdescription
Currently three up-to-date Terrestrial Reference Frames (TRF) are available, the ITRF2014 from IGN, the DTRF2014 from DGFI-TUM, and JTRF2014 from JPL. All use the identical input data of space-geodetic station positions and Earth orientation parameters, but the concept of combining these data is fundamentally different. The IGN approach is based on the combination of technique solutions, while the DGFI is combining the normal equation systems. Both yield in reference epoch coordinates and velocities for a global set of stations. JPL uses a Kalman filter approach, realizing a TRF through weekly time series of geocentric coordinates. As the determination of the CRF is not independent of the TRF and vice versa, the choice of the TRF might impact on the CRF. Within this work we assess this effect.We find that the estimated Earth orientation parameter (EOP) from DTRF2014 agree best with those from ITRF2014, the EOP resulting from JTRF2014 show besides clear yearly signals also some artifacts linked to certain stations. The estimated source position time series however, agree with each other better than ±1μas. When fixing EOP and station positions we can see the maximal effect of the TRF on the CRF. Here large systematics in position as well as proper motion arise. In case of ITRF2008 they can be linked to the missing data after 2008. By allowing the EOP and stations to participate in the adjustment, the agreement increases, however, systematics remain. Keywords: Reference frames, CRF, TRF, DTRF2014, JTRF2014, ITRF2014
year | journal | country | edition | language |
---|---|---|---|---|
2022-09-09 | Geodesy and geodynamics |