6533b85ffe1ef96bd12c1ce7
RESEARCH PRODUCT
Boosting Biomass Quantity and Quality by Improved Mixotrophic Culture of the Diatom Phaeodactylum tricornutum
Valeria VillanovaMark PoolmanValeria VillanovaValeria VillanovaDipali SinghDipali SinghJulien PagliardiniDavid FellAdeline Le MonnierGiovanni Finazzisubject
0106 biological sciences0301 basic medicine[SDV.BIO]Life Sciences [q-bio]/BiotechnologyPhotobioreactorBiomassPlant Sciencelcsh:Plant culture01 natural sciences03 medical and health sciencesAlgaemixotrophic growthgenome-scale metabolic modelSettore BIO/04 - Fisiologia Vegetalelcsh:SB1-1110Phaeodactylum tricornutumbiomass productivityOriginal ResearchbiologyChemistryPlinear programmingbiology.organism_classificationPulp and paper industryP. tricornutumdiatomLight intensity030104 developmental biologyDiatomtricornutumBiofuelmetabolismMixotroph010606 plant biology & botanydescription
Diatoms are photoautotrophic unicellular algae and are among the most abundant, adaptable, and diverse marine phytoplankton. They are extremely interesting not only for their ecological role but also as potential feedstocks for sustainable biofuels and high-value commodities such as omega fatty acids, because of their capacity to accumulate lipids. However, the cultivation of microalgae on an industrial scale requires higher cell densities and lipid accumulation than those found in nature to make the process economically viable. One of the known ways to induce lipid accumulation in Phaeodactylum tricornutum is nitrogen deprivation, which comes at the expense of growth inhibition and lower cell density. Thus, alternative ways need to be explored to enhance the lipid production as well as biomass density to make them sustainable at industrial scale. In this study, we have used experimental and metabolic modeling approaches to optimize the media composition, in terms of elemental composition, organic and inorganic carbon sources, and light intensity, that boost both biomass quality and quantity of P. tricornutum. Eventually, the optimized conditions were scaled-up to 2 L photobioreactors, where a better system control (temperature, pH, light, aeration/mixing) allowed a further improvement of the biomass capacity of P. tricornutum to 12 g/L.
year | journal | country | edition | language |
---|---|---|---|---|
2021-04-09 | Frontiers in Plant Science |