6533b85ffe1ef96bd12c22bb

RESEARCH PRODUCT

Grafting of polymer chains on the surface of carbon nanotubes via nitroxide radical coupling reaction

C. YangM. GuenziF. CicognaC. GambarottiG. FilipponeC. PinzinoE. PassagliaN. Tz. DintchevaS. CarroccioS. Coiai

subject

polymer grafting; MWCNTs; nitroxide radical coupling (NRC); click chemistry; electron paramagnetic resonance (EPR); rheologyPolymers and PlasticsClick chemistryElectron paramagnetic resonance (EPR)MWCNTNitroxide radical coupling (NRC)RheologyPolymer grafting

description

Poly(butylene succinate)/MWCNTs nanocomposites with improved dispersion and with nanotubes embedded/immobilized into the polymer matrix were here prepared by an alternative "grafting to" method based on thenitroxide radical coupling reaction. Poly(butylene succinate) (PBS) was grafted on the surface of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) modified multi-walled carbon nanotubes (MWCNTs) via a nitroxide radical coupling reaction. TEMPO functionalized MWCNTs (MWCNTs-g-TEMPO) were synthesized using the Cu(I)-catalyzed azide/alkyne click chemistry approach and the covalent bond of the nitroxide moieties onto the MWCNTs was confirmed via electron paramagnetic resonance (EPR) spectroscopy. The PBS grafting on the sidewalls of MWCNTs was carried out in solution via peroxide-induced formation of macroradicals and it was confirmed by EPR and attenuated total reflectance Fourier transform infrared analysis. Preliminary rheological and calorimetric analyses revealed that the grafting improves both the quality of stress transfer across the polymer-nanotube interface and the degree of dispersion of the filler, which also exhibited a moderate nucleating action on the PBS. Overall, our results demonstrate that nitroxide radical coupling is an efficient and feasible 'grafting to' method to covalently bond polymer chains on MWCNTs with possible advantages in the final properties of the polymer nanocomposites.

10.1002/pi.5023http://hdl.handle.net/11311/971393