6533b860fe1ef96bd12c2f72
RESEARCH PRODUCT
Automatic dynamic texture segmentation using local descriptors and optical flow
Guoying ZhaoEsa RahtuMatti PietikäinenJie ChenMikko Salosubject
ta113business.industrySegmentation-based object categorizationComputer scienceTexture DescriptorComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONOptical flowScale-space segmentationPattern recognitionImage segmentationComputer Graphics and Computer-Aided DesignImage textureMotion fieldRegion growingComputer Science::Computer Vision and Pattern RecognitionHistogramComputer visionSegmentationArtificial intelligencebusinessSoftwaredescription
A dynamic texture (DT) is an extension of the texture to the temporal domain. How to segment a DT is a challenging problem. In this paper, we address the problem of segmenting a DT into disjoint regions. A DT might be different from its spatial mode (i.e., appearance) and/or temporal mode (i.e., motion field). To this end, we develop a framework based on the appearance and motion modes. For the appearance mode, we use a new local spatial texture descriptor to describe the spatial mode of the DT; for the motion mode, we use the optical flow and the local temporal texture descriptor to represent the temporal variations of the DT. In addition, for the optical flow, we use the histogram of oriented optical flow (HOOF) to organize them. To compute the distance between two HOOFs, we develop a simple effective and efficient distance measure based on Weber's law. Furthermore, we also address the problem of threshold selection by proposing a method for determining thresholds for the segmentation method by an offline supervised statistical learning. The experimental results show that our method provides very good segmentation results compared to the state-of-the-art methods in segmenting regions that differ in their dynamics.
year | journal | country | edition | language |
---|---|---|---|---|
2012-08-02 | IEEE Transactions on Image Processing |