6533b861fe1ef96bd12c4553

RESEARCH PRODUCT

Inhibitory activities of short linear motifs underlie Hox interactome specificity in vivo

Samir MerabetMarilyne DuffraisseBruno HudrySéverine VialaManon BaëzaAna Rogulja-ortmannAmélie DardMarjorie HeimChristine Brun

subject

Embryo Nonmammalian[SDV]Life Sciences [q-bio]Amino Acid MotifsinteractomeInteractomeBimolecular fluorescence complementationMiceTARGET GENEDrosophila ProteinsCELL REGULATIONProtein Interaction MapsBiology (General)Hox genetranscription factorGeneticsD. melanogasterGeneral NeuroscienceQRINTERACTION MODULESGeneral MedicineREGIONSHoxTRANSCRIPTION FACTORSDrosophila melanogasterGenomics and Evolutionary BiologyOrgan Specificityembryonic structuresMedicineOligopeptidesProtein BindingResearch Articleanimal structuresQH301-705.5ScienceembryoContext (language use)Computational biology[SDV.BC]Life Sciences [q-bio]/Cellular BiologyCell fate determinationBiologyBinding CompetitiveGeneral Biochemistry Genetics and Molecular BiologyFluorescenceProtein–protein interactionEvolution MolecularStructure-Activity Relationship[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyAnimalsShort linear motif[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyBiFCTranscription factor[SDV.BC] Life Sciences [q-bio]/Cellular BiologydevelopmentHomeodomain ProteinsABDOMINAL-AGeneral Immunology and MicrobiologyBIMOLECULAR FLUORESCENCE COMPLEMENTATIONREPRESSIONDNAPROTEIN INTERACTIONSIntrinsically Disordered ProteinsDROSOPHILA-MELANOGASTERMutation

description

Hox proteins are well-established developmental regulators that coordinate cell fate and morphogenesis throughout embryogenesis. In contrast, our knowledge of their specific molecular modes of action is limited to the interaction with few cofactors. Here, we show that Hox proteins are able to interact with a wide range of transcription factors in the live Drosophila embryo. In this context, specificity relies on a versatile usage of conserved short linear motifs (SLiMs), which, surprisingly, often restrains the interaction potential of Hox proteins. This novel buffering activity of SLiMs was observed in different tissues and found in Hox proteins from cnidarian to mouse species. Although these interactions remain to be analysed in the context of endogenous Hox regulatory activities, our observations challenge the traditional role assigned to SLiMs and provide an alternative concept to explain how Hox interactome specificity could be achieved during the embryonic development. DOI: http://dx.doi.org/10.7554/eLife.06034.001

10.7554/elife.06034https://elifesciences.org/articles/06034