6533b861fe1ef96bd12c4f7b

RESEARCH PRODUCT

Behavior of plant plasma membranes under hydrostatic pressure as monitored by fluorescent environment-sensitive probes.

Patrick GervaisPatricia Gerbeau-pissotYves MélyAndrey S. KlymchenkoYann RocheJean-marie Perrier-cornetFrançoise Simon-plas

subject

0106 biological sciencesHIGH HYDROSTATIC PRESSURE[SDV]Life Sciences [q-bio]Hydrostatic pressureStatic ElectricityAnalytical chemistryBiophysicsHAUTES PRESSIONS HYDROSTATIQUEFluorescence PolarizationPyridinium Compounds[SDV.BC]Life Sciences [q-bio]/Cellular Biology01 natural sciencesBiochemistryFluorescence spectroscopyPhase TransitionCell Line03 medical and health scienceschemistry.chemical_compoundPhase (matter)2-NaphthylamineTobaccoHydrostatic Pressure[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologySPECTROSCOPIE DE FLUORESCENCEComputingMilieux_MISCELLANEOUS030304 developmental biologyFluorescent Dyes0303 health sciencesMETHYL-β-CYCLODEXTRINPLASMA MEMBRANE3-HydroxyflavoneCell Membranebeta-CyclodextrinsPhytosterolsCell BiologyPHYTOSTEROLFluorescenceSterolMembraneSpectrometry FluorescenceFLUORESCENCE SPECTROSCOPY3-HYDROXYFLAVONEchemistryLaurdanSONDE FLUORECENTELaurates010606 plant biology & botany

description

International audience; We monitored the behavior of plasma membrane (PM) isolated from tobacco cells (BY-2) under hydrostatic pressures up to 3.5 kbar at 30 °C, by steady-state fluorescence spectroscopy using the newly introduced environment-sensitive probe F2N12S and also Laurdan and di-4-ANEPPDHQ. The consequences of sterol depletion by methyl-β-cyclodextrin were also studied. We found that application of hydrostatic pressure led to a marked decrease of hydration as probed by F2N12S and to an increase of the generalized polarization excitation (GPex) of Laurdan. We observed that the hydration effect of sterol depletion was maximal between 1 and 1.5 kbar but was much less important at higher pressures (above 2 kbar) where both parameters reached a plateau value. The presence of a highly dehydrated gel state, insensitive to the sterol content, was thus proposed above 2.5 kbar. However, the F2N12S polarity parameter and the di-4-ANEPPDHQ intensity ratio showed strong effect on sterol depletion, even at very high pressures (2.5–3.5 kbar), and supported the ability of sterols to modify the electrostatic properties of membrane, notably its dipole potential, in a highly dehydrated gel phase. We thus suggested that BY-2 PM undergoes a complex phase behavior in response to the hydrostatic pressure and we also emphasized the role of phytosterols to regulate the effects of high hydrostatic pressure on plant PM.

https://hal.archives-ouvertes.fr/hal-00508244