6533b861fe1ef96bd12c4fa4

RESEARCH PRODUCT

New Electroactive Polymers with Electronically Isolated 4,7-Diarylfluorene Chromophores as Positive Charge Transporting Layer Materials for OLEDs

Dovydas BlazeviciusGintare KrucaiteSaulius GrigaleviciusD. TavgenieneAivars VembrisBaohua Zhang

subject

Materials sciencePharmaceutical Science02 engineering and technologyFluorene010402 general chemistry01 natural sciencesArticleAnalytical Chemistrylcsh:QD241-441fluorenechemistry.chemical_compoundlcsh:Organic chemistryDrug Discovery:NATURAL SCIENCES:Physics [Research Subject Categories]Electroactive polymersOLEDThermal stabilityPhysical and Theoretical Chemistrychemistry.chemical_classificationorganic light emitting diodeThin layersOrganic ChemistryPolymer021001 nanoscience & nanotechnology0104 chemical sciencesAmorphous solidfluoreneChemical engineeringchemistryhole transporting materialChemistry (miscellaneous)polyetherorganic light-emitting diodeMolecular Medicineionization potential0210 nano-technologyGlass transition

description

The OLED materials were developed in the frame of project funded by the Research Council of Lithuania (grant No. S-LLT-19-2). B.Z. is thankful to the National Natural Science Foundation of China (No. 51773195), and the Research & Development Projects in Key Areas of Guangdong Province, China (No. 2019B010933001). We are also obliged to D. Volyniuk for measurements of the ionization potentials.

https://doi.org/10.3390/molecules26071936