6533b861fe1ef96bd12c565a
RESEARCH PRODUCT
Efficient pruning of multilayer perceptrons using a fuzzy sigmoid activation function
José D. Martín-guerreroJoan Vila-francésJavier Calpe-maravillaAntonio J. Serrano-lópezGustau Camps-vallsEmilio Soria-olivassubject
Artificial neural networkComputer sciencebusiness.industryTime delay neural networkCognitive NeuroscienceActivation functionRectifier (neural networks)PerceptronFuzzy logicComputer Science ApplicationsArtificial IntelligenceMultilayer perceptronFeedforward neural networkPruning (decision trees)Artificial intelligenceTypes of artificial neural networksbusinessdescription
This Letter presents a simple and powerful pruning method for multilayer feed forward neural networks based on the fuzzy sigmoid activation function presented in [E. Soria, J. Martin, G. Camps, A. Serrano, J. Calpe, L. Gomez, A low-complexity fuzzy activation function for artificial neural networks, IEEE Trans. Neural Networks 14(6) (2003) 1576-1579]. Successful performance is obtained in standard function approximation and channel equalization problems. Pruning allows to reduce network complexity considerably, achieving a similar performance to that obtained by unpruned networks.
year | journal | country | edition | language |
---|---|---|---|---|
2006-03-01 | Neurocomputing |