6533b861fe1ef96bd12c580f
RESEARCH PRODUCT
Combining multiple hypothesis testing with machine learning increases the statistical power of genome-wide association studies
Sören SonnenburgThorsten DickhausErnst FehrDaniel SchunkKlaus-robert MüllerKlaus-robert MüllerMarius KloftXavier FarréJuan Antonio RodríguezUrko M. MarigortaBettina MiethRobin VobrubaGilles BlanchardCarlos Morcillo-suarezArcadi NavarroArcadi Navarrosubject
0301 basic medicineStatistical methodsComputer scienceGenome-wide association studyMachine learningcomputer.software_genreGenome-wide association studiesStatistical powerArticle[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]Set (abstract data type)03 medical and health sciences[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG][MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]10007 Department of EconomicsStatistical significanceReplication (statistics)genomeStatistical hypothesis testingGenetic association1000 MultidisciplinaryMultidisciplinarybusiness.industryComputational scienceInstitut für Mathematik330 EconomicsSupport vector machine030104 developmental biologyMultiple comparisons problemwide association studiesstatistical methodsArtificial intelligencebusinesscomputerdescription
Mieth, Bettina et al.
year | journal | country | edition | language |
---|---|---|---|---|
2016-11-28 |