6533b861fe1ef96bd12c5857

RESEARCH PRODUCT

Identification of the Parameters of Reduced Vector Preisach Model by Neural Networks

Marco Trapanense

subject

Artificial neural networkEstimation theoryComputer sciencebusiness.industryDifferential equationComputer Science::Neural and Evolutionary ComputationPattern recognitionMagnetic hysteresisPerceptronMagnetic susceptibilityElectronic Optical and Magnetic MaterialsIdentification (information)MagnetizationHysteresisMultilayer perceptronArtificial intelligenceElectrical and Electronic EngineeringbusinessSaturation (magnetic)

description

This paper presents a methodology for identifying reduced vector Preisach model parameters by using neural networks. The neural network used is a multiplayer perceptron trained with the Levenberg-Marquadt training algorithm. The network is trained by some hysteresis data, which are generated by using reduced vector Preisach model with preassigned parameters. It is shown how a properly trained network is able to find the parameters needed to best fit a magnetization hysteresis curve.

10.1109/tmag.2008.2001657http://hdl.handle.net/10447/14424