6533b862fe1ef96bd12c6c8c

RESEARCH PRODUCT

Artichoke (Cynara cardunculus L.) fibres as potential reinforcement of composite structures

Antonino ValenzaG. Di BellaVincenzo Fiore

subject

Thermogravimetric analysisMaterials scienceScanning electron microscopy (SEM)Composite number02 engineering and technologyD. Infrared (IR) spectroscopy010402 general chemistry01 natural sciencesB. Mechanical properties; D. Infrared (IR) spectroscopy; D. Scanning electron microscopy (SEM); D. Thermogravimetric analysis (TGA); Lignocellulosic fibreschemistry.chemical_compoundUltimate tensile strengthLigninCelluloseComposite materialNatural fiberB. Mechanical propertiesbiologyD. Thermogravimetric analysis (TGA)Thermogravimetric analysis (TGA)CynaraGeneral EngineeringD. Scanning electron microscopy (SEM)021001 nanoscience & nanotechnologyMicrostructurebiology.organism_classificationLignocellulosic fibres0104 chemical sciencesSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryCeramics and Composites0210 nano-technologyInfrared (IR) spectroscopyMechanical propertieLignocellulosic fibre

description

Abstract The aim of this paper is to examine the use of artichoke fibres as potential reinforcement in polymer composites. The fibres are extracted from the stem of artichoke plant, which grows in Southern Sicily. In order to use these lignocellulosic fibres as potential reinforcement in polymer composites, it is fundamental to investigate their microstructure, chemical composition and mechanical properties. Therefore, the morphology of artichoke fibres was investigated through electron microscopy, the thermal behaviour through thermogravimetric analysis and the real density through a helium pycnometer. The chemical composition of the natural fibres in terms of cellulose, lignin, and ash contents was determinated by using standard test methods. Finally, the mechanical characterization was carried out through single fibre tensile tests, analysing the results through statistical analysis.

10.1016/j.compscitech.2011.04.003http://hdl.handle.net/10447/55420