6533b86cfe1ef96bd12c825a

RESEARCH PRODUCT

Competitive interactions are mediated in a sex-specific manner by arbuscular mycorrhiza inAntennaria dioica

Sandra VargaSandra VargaMinna-maarit KytöviitaRocío Vega-frutisRocío Vega-frutis

subject

C240 Plant Cell Science0106 biological sciencesHieracium pilosellaplant-plant interactionsmedia_common.quotation_subjectDioecyHyphaeAntennaria dioicaPlant ScienceAsteraceaePlant Roots010603 evolutionary biology01 natural sciencesCompetition (biology)Intraspecific competitionGlomeromycotaMycorrhizaeBotanyBiomassGlomeromycotaSymbiosisEcology Evolution Behavior and Systematicsmedia_commonbiologyReproductionta1183fungifood and beveragesGeneral MedicineInterspecific competitionbiology.organism_classificationdioecyPlant ecologyArbuscular mycorrhizasexual dimorphismta1181C250 Plant Pathologycompetition010606 plant biology & botany

description

Plants usually interact with other plants, and the outcome of such interaction ranges from facilitation to competition depending on the identity of the plants, including their sexual expression. Arbuscular mycorrhizal (AM) fungi have been shown to modify competitive interactions in plants. However, few studies have evaluated how AM fungi influence plant intraspecific and interspecific interactions in dioecious species. The competitive abilities of female and male plants of Antennaria dioica were examined in a greenhouse experiment. Females and males were grown in the following competitive settings: (i) without competition, (ii) with intrasexual competition, (iii) with intersexual competition, and (iv) with interspecific competition by Hieracium pilosella – a plant with similar characteristics to A. dioica. Half of the pots were grown with Claroideoglomus claroideum, an AM fungus isolated from the same habitat as the plant material. We evaluated plant survival, growth, flowering phenology, and production of AM fungal structures. Plant survival was unaffected by competition or AM fungi. Competition and the presence of AM fungi reduced plant biomass. However, the sexes responded differently to the interaction between fungal and competition treatments. Both intra- and interspecific competition results were sex-specific, and in general, female performance was reduced by AM colonization. Plant competition or sex did not affect the intraradical structures, extraradical hyphae, or spore production of the AM fungus. These findings suggest that plant sexual differences affect fundamental processes such as competitive ability and symbiotic relationships with AM fungi.

https://doi.org/10.1111/plb.12510