6533b86cfe1ef96bd12c8c19
RESEARCH PRODUCT
A novel pressure regulation system based on Banki hydro turbine for energy recovery under in-range and out-range discharge conditions
Marwa HannachiMarwa HannachiAhmed KetataZied DrissTullio TucciarelliCostanza AricòMarco Sinagrasubject
Energy recoveryPipingRenewable Energy Sustainability and the EnvironmentComputer scienceTurbulence020209 energyFlow (psychology)Energy Engineering and Power Technology02 engineering and technologyTurbineVolumetric flow rateSettore ICAR/01 - IdraulicaPhysics::Fluid DynamicsFuel TechnologyFlow conditions020401 chemical engineeringNuclear Energy and EngineeringControl theory0202 electrical engineering electronic engineering information engineeringRange (statistics)Water distribution network Banki turbine Pressure regulation system Mobile flap Hydrodynamics energy recovery0204 chemical engineeringdescription
Abstract Efficiency improvement of water distribution networks needs to be in place to guarantee a long life period under suitable operating conditions. Excessive pressure is among the well-known issues encountered in water distribution networks which can cause strength damages to the piping system. In order to overcome this drawback and to reach a suitable water pressure delivery, the present work suggests a novel pressure regulation system. This regulation system is consisting of a Banki turbine equipped with a mobile flap as a control device. The suggested pressure regulation system was experimentally and numerically investigated under in-range i.e. like actual water distribution networks and out-range flow conditions. A set of computational fluid dynamic simulations was carried out to study the performance and flow characteristics around the turbine with and without a mobile flap. The flow solution was obtained by solving the Reynolds-averaged Navier–Stokes equations. Different rotor–stator interface and turbulence models, and mesh sizes were investigated to select the most accurate configuration of the numerical method. The validation of the numerical method was performed with an assessment of the standard error with respect to experimental data. Based on the experimental results, three correlations estimating the net head, the torque and the efficiency for given flap angle and volumetric flow rate were presented. Results revealed that the suggested regulation system presents a good efficiency up to 76% to recover the wasted hydrodynamics energy in water distribution networks.
year | journal | country | edition | language |
---|---|---|---|---|
2021-09-01 |