6533b86cfe1ef96bd12c8dac

RESEARCH PRODUCT

Non-circular rotating beams and CMB experiments

J. V. ArnauDiego SáezA. M. Aliaga

subject

Cosmic microwave background ; Cosmology theory ; Large-scale structure of the universe ; Numerical method ; Data analysis methodmedia_common.quotation_subjectCosmic microwave backgroundFOS: Physical sciencesAstrophysicsNumerical methodUNESCO::ASTRONOMÍA Y ASTROFÍSICAAstrophysicsRotationAsymmetryCosmic microwave backgroundlaw.inventionsymbols.namesakelawCosmology theoryLarge-scale structure of the universePlanckAnisotropymedia_commonPhysicsData analysis methodAstrophysics (astro-ph)Spectral densityAstronomy and Astrophysics:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia [UNESCO]SynchrotronComputational physicsSpace and Planetary SciencesymbolsUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]Beam (structure)

description

This paper is concerned with small angular scale experiments for the observation of cosmic microwave background anisotropies. In the absence of beam, the effects of partial coverage and pixelisation are disentangled and analyzed (using simulations). Then, appropriate maps involving the CMB signal plus the synchrotron and dust emissions from the Milky Way are simulated, and an asymmetric beam --which turns following different strategies-- is used to smooth the simulated maps. An associated circular beam is defined to estimate the deviations in the angular power spectrum produced by beam asymmetry without rotation and, afterwards, the deviations due to beam rotation are calculated. For a certain large coverage, the deviations due to pure asymmetry and asymmetry plus rotation appear to be very systematic (very similar in each simulation). Possible applications of the main results of this paper to data analysis in large coverage experiments --as PLANCK-- are outlined.

https://doi.org/10.1051/0004-6361:20011681