6533b86dfe1ef96bd12ca941
RESEARCH PRODUCT
Interactive multiobjective optimization with NIMBUS for decision making under uncertainty
Theodor J. StewartKaisa MiettinenJyri Mustajokisubject
Mathematical optimizationComputer sciencepareto optimalityManagement Science and Operations Researchinteractive methodsDecision makerskenaariotMulti-objective optimizationMoment (mathematics)Conflicting objectivesmultiple objective programmingBusiness Management and Accounting (miscellaneous)uncertainty handlingPortfolio optimizationDecision-makingclassification of objectivesOptimal decisionDecision analysisdescription
We propose an interactive method for decision making under uncertainty, where uncertainty is related to the lack of understanding about consequences of actions. Such situations are typical, for example, in design problems, where a decision maker has to make a decision about a design at a certain moment of time even though the actual consequences of this decision can be possibly seen only many years later. To overcome the difficulty of predicting future events when no probabilities of events are available, our method utilizes groupings of objectives or scenarios to capture different types of future events. Each scenario is modeled as a multiobjective optimization problem to represent different and conflicting objectives associated with the scenarios. We utilize the interactive classification-based multiobjective optimization method NIMBUS for assessing the relative optimality of the current solution in different scenarios. This information can be utilized when considering the next step of the overall solution process. Decision making is performed by giving special attention to individual scenarios. We demonstrate our method with an example in portfolio optimization. peerReviewed
year | journal | country | edition | language |
---|---|---|---|---|
2013-06-02 |