6533b86efe1ef96bd12cbddb

RESEARCH PRODUCT

Effects of oxidoreduction potential combined with acetic acid, NaCl and temperature on the growth, acidification, and membrane properties of Lactobacillus plantarum.

Yves WachéRémy CachonCharles DivièsAriane OuvryRaphaëlle Tourdot-maréchal

subject

MESH: Oxidation-ReductionMESH : Acetic AcidMESH: Sodium ChlorideHydrogenMembrane FluiditySodiumInorganic chemistrychemistry.chemical_elementMESH : Membrane Fluidity[SDV.BC]Life Sciences [q-bio]/Cellular BiologySodium ChlorideMicrobiologyAcetic acidchemistry.chemical_compoundLactobacillusGeneticsMembrane fluidity[INFO.INFO-BT]Computer Science [cs]/BiotechnologyMolecular BiologyMESH : Temperature[SDV.BC] Life Sciences [q-bio]/Cellular BiologyAcetic AcidMESH : Oxidation-Reductionbiology[ SDV.BC ] Life Sciences [q-bio]/Cellular BiologyTemperaturebiology.organism_classificationNitrogenMESH: TemperatureCulture MediaMESH : Sodium ChlorideLactobacillusMembrane[INFO.INFO-BT] Computer Science [cs]/BiotechnologychemistryMESH: Acetic AcidMESH: Culture MediaMESH : Culture MediaMESH : LactobacillusOxidation-ReductionMESH: LactobacillusLactobacillus plantarum[ INFO.INFO-BT ] Computer Science [cs]/BiotechnologyMESH: Membrane FluidityNuclear chemistry

description

International audience; The effects of oxidoreduction potential (Eh) combined with acetic acid, NaCl and temperature on the growth, acidification, and membrane properties of Lactobacillus plantarum were studied. The culture medium was set at pH 5, and two different Eh values were adjusted using nitrogen (Eh = +350 mV) or hydrogen (Eh = -300 mV) gas. In reducing condition, the growth was slowed and the acidification delayed at 37 degrees C, but not at 10 degrees C. A synergistic inhibitory effect of reducing Eh, acetic acid and NaCl was observed, mainly for delaying the lag phase before acidification. These results may be explained by changes in ATPase activity, membrane fluidity and surface properties.

https://hal.archives-ouvertes.fr/hal-00368229