6533b86efe1ef96bd12cbfde

RESEARCH PRODUCT

Prehibernation and hibernation effects on the D-3-hydroxybutyrate dehydrogenase of the heavy and light mitochondria from liver jerboa (Jaculus orientalis) and related metabolism.

Driss MountassifNorbert LatruffeM'hammed Saïd El KebbajMostafa Kabine

subject

HibernationMESH: RatsMESH : HibernationMESH : Hydroxybutyrate DehydrogenaseMESH : RodentiaMESH: RodentiaFluorescent Antibody TechniqueMitochondria LiverRodentiaDehydrogenaseMitochondrionBiochemistryMESH : PhospholipidsHydroxybutyrate DehydrogenaseHibernation[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyAnimalsMESH: Animals[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyInner mitochondrial membraneMESH: Fluorescent Antibody TechniqueJaculus orientalis[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyPhospholipidsMESH: Phospholipidschemistry.chemical_classificationMESH: KineticsbiologyMESH : RatsGeneral MedicineMetabolismbiology.organism_classificationRatsMESH: Hydroxybutyrate DehydrogenaseKineticsMESH : Fluorescent Antibody TechniqueEnzymechemistryBiochemistryMESH : Mitochondria LiverKetone bodiesMESH: Hibernationsense organsMESH : AnimalsMESH : KineticsMESH: Mitochondria Liver

description

The D-3-hydroxybutyrate dehydrogenase (BDH) (EC 1.1.1.30) from liver jerboa (Jaculus orientalis), a ketone body converting enzyme in mitochondria, in two populations of mitochondria (heavy and light) has been studied in different jerboa states (euthermic, prehibernating and hibernating). The results reveal: (1) important variations between states in terms of ketones bodies, glucose and lipid levels; (2) significant differences between the BDH of the two mitochondrial populations in term of protein expression and kinetic properties. These results suggest that BDH leads an important conformational change depending on the physiological state of jerboa. This BDH structural change could be the consequence of the lipid composition modifications in inner mitochondrial membrane leading to changes in BDH catalytic properties.

https://hal.archives-ouvertes.fr/hal-00259211