6533b86efe1ef96bd12cc55f

RESEARCH PRODUCT

Non-radial pulsations in be stars. Preparation of the corot space mission

Juan Gutiérrez Soto

subject

COROT53Be starsAstrophysics::Solar and Stellar AstrophysicsFísicaAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics::Earth and Planetary AstrophysicsSmall Magellanic CloudsAstersoseismologyAstrophysics::Galaxy Astrophysics

description

The general objective of the present work is to contribute to the knowledge of the physics of Be Stars. In particular, we are interested in studying and characterizing their pulsational properties. A very suitable tool to reach this goal is the study and analysis of photometric time series with the maximum time baseline, density and photometric accuracy.The space mission COROT scheduled to be launched in December 2006, will provide ultra high precision, relative stellar photometry for very long continuous observing runs. Up to ten stars will be observed in the seismology fields with a photometric accuracy of a few 10-4 and color information during 150 days.The observations of Be stars with COROT will provide photometric time series with unprecedented quality. Their analysis will allow us to qualitatively improve our knowledge and understanding of the pulsational characteristics of Be stars. In consequence, we have started a research project aimed at observing Be stars both in the seismology and exoplanet fields of COROT.In this thesis we present the first step of this project, which is the preparation and study of the sample of Be stars that will be observed by COROT. We have performed photometric analysis of all Be stars located in the seismology fields (Chap. 2). Special emphasis has been given to two stars (NW Ser and V1446 Aql) in which we have detected multiperiodic variability and these variations have been modeled in terms of stellar pulsations (Chap. 3). We have also performed an in-depth spectroscopic study of NW Ser and identified the non-radial pulsating modes taking into account the rotational effects (Chap. 4). A technique to search for faint Be stars based on CCD photometry has been developed and is presented in Chap. 5. We also present a list of faint Be stars located in the exoplanet fields of COROT detected with this technique and which we propose as targets for COROT. In addition, we have proven that our period-analysis techniques are suitable to detect multiperiodicity in large temporal baseline data. In particular, we have detected non-radial pulsations in some Be stars in the low-metallicity galaxy Small Magellanic Clouds (Chap. 6). The current theoretical models do not predict the presence of pulsational instabilities in such low-metallicity environment, and therefore, our results point towards the necessity of new and improved models.

http://www.tdx.cat/TDX-0113110-095658