6533b86efe1ef96bd12cc9ea
RESEARCH PRODUCT
Catalytic Dehydration of Fructose to 5-Hydroxymethylfurfural in Aqueous Medium over Nb2O5-Based Catalysts
Bartolomeo MegnaMaria Luisa TestaElisa I. García-lópezFrancesca Rita PomillaGiuseppe MarcìLeonarda F. Liottasubject
General Chemical Engineeringtitanium oxide02 engineering and technologybiomass valorization010402 general chemistry01 natural sciencesArticle5-HMFCatalysisAutoclavechemistry.chemical_compoundAdsorptionbiomass valorization; 5-HMF; heterogeneous acid catalysis; niobium oxide; titanium oxide; green chemistryDesorptionGeneral Materials ScienceQD1-999green chemistryFructoseniobium oxide021001 nanoscience & nanotechnologyheterogeneous acid catalysis0104 chemical sciencesSolventChemistrychemistryYield (chemistry)0210 nano-technologySelectivityNuclear chemistrydescription
The catalytic dehydration of fructose to 5-hydroxymethylfurfural (HMF) in water was performed in the presence of pristine Nb2O5 and composites containing Nb and Ti, Ce or Zr oxides. In all experiments, fructose was converted to HMF using water as the solvent. The catalysts were characterized by powder X-ray diffraction, scanning electron microscopy, N2 physical adsorption, infrared and Raman spectroscopy and temperature-programmed desorption of NH3. Experimental parameters such as fructose initial concentration, volume of the reacting suspension, operation temperature, reaction time and amount of catalyst were tuned in order to optimize the catalytic reaction process. The highest selectivity to HMF was ca. 80% in the presence of 0.5 g·L−1 of bare Nb2O5, Nb2O5-TiO2 or Nb2O5-CeO2 with a maximum fructose conversion of ca. 70%. However, the best compromise between high conversion and high selectivity was reached by using 1 g·L−1 of pristine Nb2O5. Indeed, the best result was obtained in the presence of Nb2O5, with a fructose conversion of 76% and a selectivity to HMF of 75%, corresponding to the highest HMF yield (57%). This result was obtained at a temperature of 165° in an autoclave after three hours of reaction by using 6 mL of 1 M fructose suspension with a catalyst amount equal to 1 g·L−1.
year | journal | country | edition | language |
---|---|---|---|---|
2021-07-13 | Nanomaterials |