6533b86ffe1ef96bd12cd412

RESEARCH PRODUCT

LiCrO2 Under Pressure: In-Situ Structural and Vibrational Studies

Julio Pellicer-porresD. Martínez-garcíaRekha RaoCatalin PopescuSwayam KesariAlka B. GargMarco BettinelliDaniel Errandonea

subject

DiffractionMaterials sciencehigh-pressureHigh-pressureGeneral Chemical EngineeringThermodynamics02 engineering and technology01 natural sciencesInorganic Chemistrysymbols.namesakeElectrical resistance and conductanceElectrical resistivity and conductivity0103 physical scienceslcsh:QD901-999General Materials ScienceHexagonal lattice010306 general physicsequation of stateBulk modulusEquation of state021001 nanoscience & nanotechnologyCondensed Matter PhysicsX-ray diffractionX-ray crystallographyhigh-pressure; X-ray diffraction; Raman spectroscopy; equation of stateRaman spectroscopysymbolslcsh:Crystallography0210 nano-technologyRaman spectroscopyPowder diffraction

description

The high-pressure behaviour of LiCrO2, a compound isostructural to the battery compound LiCoO2, has been investigated by synchrotron-based angle-dispersive X-ray powder diffraction, Raman spectroscopy, and resistance measurements up to 41, 30, and 10 Gpa, respectively. The stability of the layered structured compound on a triangular lattice with R-3m space group is confirmed in all three measurements up to the highest pressure reached. The dependence of lattice parameters and unit-cell volume with pressure has been determined from the structural refinements of X-ray diffraction patterns that are used to extract the axial compressibilities and bulk modulus by means of Birch&ndash

10.3390/cryst9010002http://hdl.handle.net/11562/999599