6533b86ffe1ef96bd12cdd53

RESEARCH PRODUCT

Multivariate Methods Based Soft Measurement for Wine Quality Evaluation

Xin GaoHamid Reza KarimiShen YinLei Liu

subject

WineMeasurement methodMultivariate statisticsArticle Subjectlcsh:MathematicsApplied Mathematicsmedia_common.quotation_subjectAnalysis; Applied Mathematicslcsh:QA1-939VDP::Mathematics and natural science: 400::Mathematics: 410::Analysis: 411Ordinary least squaresPartial least squares regressionEconometricsPrincipal component regressionQuality (business)Multivariate statisticalAnalysisMathematicsmedia_common

description

Published version of an article in the journal: Abstract and Applied Analysis. Also available from the publisher at: http://dx.doi.org/10.1155/2014/740754 Open Access Soft measurement is a new, developing, and promising industry technology and has been widely used in the industry nowadays. This technology plays a significant role especially in the case where some key variables are difficult to be measured by traditional measurement methods. In this paper, the quality of the wine is evaluated given the wine physicochemical indexes according to multivariate methods based soft measurement. The multivariate methods used in this paper include ordinary least squares regression (OLSR), principal component regression (PCR), partial least squares regression (PLSR), and modified partial least squares regression (MPLSR). By comparing the performance of the four methods, the MPLSR prediction model shows superior results than the others. In general, to determine the quality of the wine, experienced wine tasters are hired to taste the wine and make a decision. However, since the physicochemical indexes of wine can to some extent reflect the quality of wine, the multivariate statistical methods based soft measure can help the oenologist in wine evaluation.

https://doi.org/10.1155/2014/740754