6533b86ffe1ef96bd12cdd65

RESEARCH PRODUCT

The ARF GAPs ELMOD1 and ELMOD3 act at the Golgi and cilia to regulate ciliogenesis and ciliary protein traffic

Katherine R HardinMichael P. EastTamara CasparyJoshua LinnertTala O. KhatibUwe WolfrumMichael J LimJames E. CasanovaYihan HuYihan HuNarra S. DeviRachel E. TurnRachel E. TurnSkylar I. DeweesRichard A. Kahn

subject

Cell divisionGTPase-activating proteinGolgi ApparatusGTPaseBiologyMicrotubulesMitochondrial Dynamicssymbols.namesakeMiceMicrotubuleCiliogenesisAnimalsCiliaMolecular BiologyADP-Ribosylation FactorsCiliumGTPase-Activating ProteinsCorrectionCell BiologyGolgi apparatusFibroblastsCell biologyCytoskeletal Proteinsmitochondrial fusionsymbolsSignal Transduction

description

ELMODs are a family of three mammalian paralogs that display GTPase activating protein (GAP) activity towards a uniquely broad array of ADP-ribosylation factor (ARF) family GTPases that includes ARF-like (ARL) proteins. ELMODs are ubiquitously expressed in mammalian tissues, highly conserved across eukaryotes, and ancient in origin, being present in the last eukaryotic common ancestor. We described functions of ELMOD2 in immortalized mouse embryonic fibroblasts (MEFs) in the regulation of cell division, microtubules, ciliogenesis, and mitochondrial fusion. Here, using similar strategies with the paralogs ELMOD1 and ELMOD3, we identify novel functions and locations of these cell regulators and compare them to those of ELMOD2, allowing determination of functional redundancy among the family members. We found strong similarities in phenotypes resulting from deletion of either Elmod1 or Elmod3 and marked differences from those arising in Elmod2 deletion lines. Deletion of either Elmod1 or Elmod3 results in the decreased ability of cells to form primary cilia, loss of a subset of proteins from cilia, and accumulation of some ciliary proteins at the Golgi, predicted to result from compromised traffic from the Golgi to cilia. These phenotypes are reversed upon activating mutant expression of either ARL3 or ARL16, linking their roles to ELMOD1/3 actions.

10.1091/mbc.e21-09-0443_corrhttps://europepmc.org/articles/PMC9561853/