6533b86ffe1ef96bd12cdde8

RESEARCH PRODUCT

Probes of the Standard Model effective field theory extended with a right-handed neutrino

Shankha BanerjeeJulien AlcaideJulien AlcaideA. V. TitovMikael ChalaMikael Chala

subject

Nuclear and High Energy PhysicsParticle physicsPhysics beyond the Standard ModelFOS: Physical sciencesComputer Science::Digital Libraries01 natural sciencesHigh Energy Physics - ExperimentStandard ModelHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesEffective field theoryNeutrino Physicslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsPhysicsLarge Hadron ColliderMissing energy010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyEffective Field TheoriesNeutrino physicsHigh Energy Physics - PhenomenologyBeyond Standard ModelComputer Science::Mathematical Softwarelcsh:QC770-798High Energy Physics::ExperimentNeutrinoElectroweak scaleLepton

description

If neutrinos are Dirac particles and, as suggested by the so far null LHC results, any new physics lies at energies well above the electroweak scale, the Standard Model effective field theory has to be extended with operators involving the right-handed neutrinos. In this paper, we study this effective field theory and set constraints on the different dimension-six interactions. To that aim, we use LHC searches for associated production of light (and tau) leptons with missing energy, monojet searches, as well as pion and tau decays. Our bounds are generally above the TeV for order one couplings. One particular exception is given by operators involving top quarks. These provide new signals in top decays not yet studied at colliders. Thus, we also design an LHC analysis to explore these signatures in the $t\overline{t}$ production. Our results are also valid if the right-handed neutrinos are Majorana and long-lived.

10.1007/jhep08(2019)031http://dx.doi.org/10.1007/jhep08(2019)031