6533b86ffe1ef96bd12cde0b

RESEARCH PRODUCT

Controlling magnetism with light in zero orbital angular momentum antiferromagnet

Mattias MatthiesenJorrit R. HortensiusSamuel Mañas-valeroItzik KaponDumitru DumcencoEnrico GianniniMakars ŠIškinsBoris A. IvanovHerre S. J. Van Der ZantEugenio CoronadoAlexey B. KuzmenkoDmytro AfanasievAndrea D. Caviglia

subject

Condensed Matter - Other Condensed MatterCondensed Matter - Materials ScienceUltrafast Spectroscopy of Correlated MaterialsSpectroscopy of Solids and InterfacesQuímica organometàl·licaGeneral Physics and AstronomyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesCondensed Matter::Strongly Correlated ElectronsMaterialsOther Condensed Matter (cond-mat.other)

description

Antiferromagnetic materials feature intrinsic ultrafast spin dynamics, making them ideal candidates for future magnonic devices operating at THz frequencies. A major focus of current research is the investigation of optical methods for the efficient generation of coherent magnons in antiferromagnetic insulators. In magnetic lattices endowed with orbital angular momentum, spin-orbit coupling enables spin dynamics through the resonant excitation of low-energy electric dipoles such as phonons and orbital resonances which interact with spins. However, in magnetic systems with zero orbital angular momentum, microscopic pathways for the resonant and low-energy optical excitation of coherent spin dynamics are lacking. Here, we consider experimentally the relative merits of electronic and vibrational excitations for the optical control of zero orbital angular momentum magnets, focusing on a limit case: the antiferromagnet manganese thiophoshate (MnPS3), constituted by orbital singlet Mn2+ ions. We study the correlation of spins with two types of excitations within its band gap: a bound electron orbital excitation from the singlet orbital ground state of Mn2+ into an orbital triplet state, which causes coherent spin precession, and a vibrational excitation of the crystal field that causes thermal spin disorder. Our findings cast orbital transitions as key targets for magnetic control in insulators constituted by magnetic centers of zero orbital angular momentum.

10.1103/physrevlett.130.076702https://hdl.handle.net/10550/85700