6533b86ffe1ef96bd12cdea8
RESEARCH PRODUCT
Impact of electron beam irradiation on fish gelatin film properties
Nasreddine BenbettaïebNasreddine BenbettaïebClaire-hélène BrachaisThomas KarbowiakFrédéric Debeaufortsubject
food.ingredientMaterials scienceMechanical and water barrier propertiesCross linkingFree RadicalsSurface Properties[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionMechanical-propertiesGamma-irradiationElectrons02 engineering and technologyGelatinAnalytical ChemistryCrystallinity0404 agricultural biotechnologyfoodUltimate tensile strength[SDV.IDA]Life Sciences [q-bio]/Food engineeringAnimalsThermal stabilityIrradiationEnvironmental scanning electron microscopeWater-vapor permeabilityRadiationCalorimetry Differential ScanningSkin gelatinProtein filmsFishes[ SDV.IDA ] Life Sciences [q-bio]/Food engineeringWater04 agricultural and veterinary sciencesGeneral Medicine021001 nanoscience & nanotechnology040401 food scienceEdible filmsChemical engineeringElectron beam irradiationGluten filmsBiodegradationGelatinWettingGelatin network0210 nano-technologyGlass transition[SDV.AEN]Life Sciences [q-bio]/Food and NutritionSurface hydrophobicityFood ScienceCross-linkingdescription
International audience; The objective of this work was to display the effect of electron beam accelerator doses on properties of plasticized fish gelatin film. Electron spin resonance indicates free radical formation during irradiation, which might induce intermolecular cross-linking. Tensile strength for gelatin film significantly increases after irradiation (improved by 30% for 60 kGy). The vapour permeability is weakly affected by irradiation. Surface tension and its polar component increase significantly and are in accordance with the increase of wettability. So, irradiation may change the orientation of polar groups of gelatin at the film surface and crosslink the hydrophobic amino acids. No modification of the crystallinity of the film is observed. These findings suggest that if structure changes, it only occurs in the amorphous phase of the gelatin matrix. It is also observed that irradiation enhances the thermal stability of the gelatin film, by increasing the glass transition temperature and the degradation temperature.
year | journal | country | edition | language |
---|---|---|---|---|
2016-03-15 |