6533b86ffe1ef96bd12ce5be

RESEARCH PRODUCT

COMPARING EVOLVABILITIES: COMMON ERRORS SURROUNDING THE CALCULATION AND USE OF COEFFICIENTS OF ADDITIVE GENETIC VARIATION

Joseph L. TomkinsFrancisco Garcia-gonzalezFrancisco Garcia-gonzalezJonathan P. EvansJanne S. KotiahoLeigh W. Simmons

subject

GeneticsSireData transformation (statistics)BiologyHeritabilityQuantitative trait locusEvolvabilityGenetic variationStatisticsGeneticsTraitGeneral Agricultural and Biological SciencesEcology Evolution Behavior and SystematicsSelection (genetic algorithm)

description

In 1992, David Houle showed that measures of additive genetic variation standardized by the trait mean, CVA (the coefficient of additive genetic variation) and its square (IA), are suitable measures of evolvability. CVA has been used widely to compare patterns of genetic variation. However, the use of CVAs for comparative purposes relies critically on the correct calculation of this parameter. We reviewed a sample of quantitative genetic studies, focusing on sire models, and found that 45% of studies use incorrect methods for calculating CVA and that practices that render these coefficients meaningless are frequent. This may have important consequences for conclusions drawn from comparative studies. Our results are suggestive of a broader problem because miscalculation of the additive genetic variance from a sire model is prevalent among the studies sampled, implying that other important quantitative genetic parameters might also often be estimated incorrectly. We discuss the most prominent issues affecting the use of CVA and IA, including scale effects, data transformation, and the comparison of traits with different dimensions. Our aim is to increase awareness of the potential mistakes surrounding the calculation and use of evolvabilities, and to compile general guidelines for calculating, reporting, and interpreting these useful measures in future studies.

https://doi.org/10.1111/j.1558-5646.2011.01565.x