6533b870fe1ef96bd12cf3d5

RESEARCH PRODUCT

Probing neutrino oscillations in supersymmetric models at the Large Hadron Collider

Diego RestrepoJosé W. F. ValleM. B. MagroOjp EboliF. De CamposWerner PorodWerner PorodMartin Hirsch

subject

Nuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsFOS: Physical sciences7. Clean energy01 natural sciencesLightest Supersymmetric ParticleColisionador de hadronesNuclear physicsHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNeutrinosOscilaciones010306 general physicsNeutrino oscillationParticle Physics - PhenomenologyPhysicsLarge Hadron Collider010308 nuclear & particles physicsHigh Energy Physics::PhenomenologySuperpartnerFísicaSupersymmetryModelos supersimétricosHigh Energy Physics - Phenomenology13. Climate actionMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrinoLepton

description

The lightest supersymmetric particle may decay with branching ratios that correlate with neutrino oscillation parameters. In this case the CERN Large Hadron Collider (LHC) has the potential to probe the atmospheric neutrino mixing angle with sensitivity competitive to its low-energy determination by underground experiments. Under realistic detection assumptions, we identify the necessary conditions for the experiments at CERN's LHC to probe the simplest scenario for neutrino masses induced by minimal supergravity with bilinear R parity violation.

10.1103/physrevd.82.075002http://hdl.handle.net/10261/29129