6533b870fe1ef96bd12d0566

RESEARCH PRODUCT

Involvement of plasma membrane proteins in plant defense responses. Analysis of the cryptogein signal transduction in tobacco

Fatma LecourieuxAngela Lebrun-garciaStephane BourqueMarie-noëlle BinetFatma OuakedDavid WendehenneAnnick ChiltzAnton SchäffnerAlain Pugin

subject

0106 biological sciencesHypersensitive responseNicotiana tabacum01 natural sciencesBiochemistryFungal Proteins03 medical and health sciencesTobacco[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyAnimals[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyProtein phosphorylation[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology030304 developmental biologyPlant Proteins0303 health sciencesbiologyAlgal ProteinsCell MembraneMembrane Proteinsfood and beveragesGeneral Medicinebiology.organism_classificationElicitorCell biologyCytosolPlants ToxicMembrane proteinBiochemistrySecond messenger systemREPONSE DE LA PLANTESignal transduction010606 plant biology & botanySignal Transduction

description

International audience; Cryptogein, a 98 amino acid protein secreted by the fungus Phytophthora cryptogea, induces a hypersensitive response and systemic acquired resistance in tobacco plants (Nicotiana tabacum var Xanthi). The mode of action of cryptogein has been studied using tobacco cell suspensions. The recognition of this elicitor by a plasma membrane receptor leads to a cascade of events including protein phosphorylation, calcium influx, potassium and chloride effluxes, plasma membrane depolarization, activation of a NADPH oxidase responsible for active oxygen species (AOS) production and cytosol acidification, activation of the pentose phosphate pathway, and activation of two mitogen-activated protein kinase (MAPK) homologues. The organization of the cryptogein responses reveals that the earliest steps of the signal transduction pathway involve plasma membrane activities. Their activation generates a complex network of second messengers which triggers the specific physiological responses. This study may contribute to our understanding of plant signaling processes because elicitors and a variety of signals including hormones, Nod factors, light, gravity and stresses share some common transduction elements and pathways.

10.1016/s0300-9084(99)80123-0https://hal.archives-ouvertes.fr/hal-02347032