6533b870fe1ef96bd12d0705

RESEARCH PRODUCT

Rotational Raman spectroscopy of ethylene using a femtosecond time-resolved pump-probe technique.

Vincent BoudonArnaud RouzéeW. RaballandBruno LavorelOlivier Faucher

subject

DYNAMICSLIQUID WATERTENSORIAL FORMALISMGeneral Physics and Astronomy02 engineering and technology01 natural sciencessymbols.namesakeMOLECULESOpticsINDUCED POLARIZATION SPECTROSCOPYPolarizability0103 physical sciencesCOHERENCEHeterodyne detectionPhysical and Theoretical ChemistrySpectroscopySPECTRUM010304 chemical physicsChemistrybusiness.industry021001 nanoscience & nanotechnologyPolarization (waves)Fourier transformFrequency domainFemtosecondsymbolsZEOLITEMODESCO2Atomic physics0210 nano-technologyRaman spectroscopybusiness

description

154309; Femtosecond Raman-induced polarization spectroscopy (RIPS) was conducted at low pressure (250 mb at 295 K and 400 mb at 373 K) in ethylene. The temporal signal, resulting from the beating between pure rotational coherences, was measured with a heterodyne detection. The temporal traces were converted to the frequency domain using a Fourier transformation and then analyzed thanks to the D2hTDS software (http://www.u-bourgogne.fr/LPUB/shTDS.html) dedicated to X2Y4 molecules with D2h symmetry. The effective Hamiltonian was expanded up to order 2, allowing the determination of five parameters with an rms of 0.017 cm(-1). Special care was taken in the precise modeling of intensities, taking into account all instrumental effects. Relative intensities were fitted (with an rms of 7.2%) and two polarizability operators were determined. (c) 2005 American Instituteof Physics.

10.1063/1.2069866https://pubmed.ncbi.nlm.nih.gov/16252950