6533b870fe1ef96bd12d077d
RESEARCH PRODUCT
Vibrational Perturbations and Ligand–Layer Coupling in a Single Crystal of Au144(SC2H4Ph)60 Nanocluster
Mika PetterssonHannu HäkkinenTanja LahtinenSami MalolaKirsi SalorinneSatu MustalahtiJaakko Koivistosubject
ta114ChemistryOvertoneta221Analytical chemistryOvertone bandMolecular physicsHot bandCrystalMolecular vibrationGeneral Materials SciencePhysical and Theoretical ChemistryRotational–vibrational couplingSingle crystalta116Doppler broadeningdescription
We have determined vibrational signatures and optical gap of the Au144(PET)60 (PET: phenylethylthiol, SC2H4Ph) nanocluster solvated in deuterated dichloromethane (DCM-D2, CD2Cl2) and in a single crystal. For crystals, solid-state (13)C NMR and X-ray diffraction were also measured. A revised value of 2200 cm(-1) (0.27 eV) was obtained for the optical gap in both phases. The vibrational spectra of solvated AU144(PET)60 closely resembles that of neat PET, while the crystalline-state spectrum exhibits significant inhomogeneous spectral broadening, frequency shifts, intensity transfer between vibrational modes, and an increase in the overtone and combination transition intensities. Spectral broadening was also observed in the (13)C NMR spectrum. Changes in the intensity are explained due to vibrational coupling of the normal modes induced by the crystal packing, and the vibrational broadening is caused by ligand-environment inhomogeneity in the crystal. This indicates a pseudocrystalline state where the cluster cores are arranged in periodic fashion, while the ligand-layer molecules between the cores form amorphous structures.
year | journal | country | edition | language |
---|---|---|---|---|
2015-08-14 | The Journal of Physical Chemistry Letters |