6533b871fe1ef96bd12d1090

RESEARCH PRODUCT

Physically based modeling of rainfall-triggered landslides: a case study in the Luquillo forest, Puerto Rico

Leonardo NotoChiara LeporeG. SivandranRafael L. BrasElisa ArnoneElisa Arnone

subject

Structural basinlcsh:Technologyhydrological modelinglcsh:TD1-1066Slope stabilityComponent (UML)lcsh:Environmental technology. Sanitary engineeringRainfall-Induced Landslides; Distributed Hydrologic Modelingrainfall-triggered landslides hydrological modeling.Water contentlcsh:Environmental scienceslcsh:GE1-350HydrologyRainfall-Induced Landslidelcsh:TSettore ICAR/02 - Costruzioni Idrauliche E Marittime E Idrologiarainfall-triggered landslideslcsh:Geography. Anthropology. RecreationInteractive evolutionLandslideVegetationFactor of safetylcsh:Grainfall-triggered landslides; hydrological modeling.Distributed Hydrologic ModelingGeology

description

This paper presents the development of a rainfall-triggered landslide module within an existing physically based spatially distributed ecohydrologic model. The model, tRIBS-VEGGIE (Triangulated Irregular Networks-based Real-time Integrated Basin Simulator and Vegetation Generator for Interactive Evolution), is capable of a sophisticated description of many hydrological processes; in particular, the soil moisture dynamics are resolved at a temporal and spatial resolution required to examine the triggering mechanisms of rainfall-induced landslides. The validity of the tRIBS-VEGGIE model to a tropical environment is shown with an evaluation of its performance against direct observations made within the study area of Luquillo Forest. The newly developed landslide module builds upon the previous version of the tRIBS landslide component. This new module utilizes a numerical solution to the Richards' equation (present in tRIBS-VEGGIE but not in tRIBS), which better represents the time evolution of soil moisture transport through the soil column. Moreover, the new landslide module utilizes an extended formulation of the factor of safety (FS) to correctly quantify the role of matric suction in slope stability and to account for unsaturated conditions in the evaluation of FS. The new modeling framework couples the capabilities of the detailed hydrologic model to describe soil moisture dynamics with the infinite slope model, creating a powerful tool for the assessment of rainfall-triggered landslide risk.

10.5194/hess-17-3371-2013http://hdl.handle.net/1721.1/81321