6533b871fe1ef96bd12d2515

RESEARCH PRODUCT

On Discovering Low Order Models in Biochemical Reaction Kinetics

Bassam BamiehLaura Giarre

subject

Multilinear algebraNonlinear systemBasis (linear algebra)Dimension (vector space)Settore ING-INF/04 - AutomaticaSimple (abstract algebra)Differential equationMathematical analysisChaoticApplied mathematicsDimensional modelingKinetic theory Nonlinear equations Polynomials Differential equationsMathematics

description

We develop a method by which a large number of differential equations representing biochemical reaction kinetics may be represented by a smaller number of differential equations. The basis of our technique is a conjecture that the high dimension equations of biochemical kinetics, which involve reaction terms of specific forms, are actually implementing a low dimension system whose behavior requires right hand sides that can not be biochemically implemented. For systems that satisfy this conjecture, we develop a simple approximation scheme based on multilinear algebra that extracts the low dimensional system from simulations of the high dimension system. We demonstrate this technique on a standard 10 dimensional model of circadian oscillations and obtain a 3 dimensional sub-model that has the same rhythmic, birhythmic and chaotic behavior of the original model.

10.1109/acc.2007.4283134http://hdl.handle.net/10447/12292