6533b871fe1ef96bd12d2544

RESEARCH PRODUCT

Development of a FungalBraid Penicillium expansum-based expression system for the production of antifungal proteins in fungal biofactories

Elena Moreno-giménezSandra Garrigues CubellsPaloma ManzanaresCarolina Ropero PérezMoisés Giner-llorcaPedro Vicente Martinez CulebrasMónica GandíaJose F. MarcosAntonella Locascio

subject

Fungal ProteinsAntifungal AgentsPenicilliumBioengineeringalpha-FetoproteinsPenicillium chrysogenumApplied Microbiology and BiotechnologyBiochemistryBiotechnology

description

Fungal antifungal proteins (AFPs) have attracted attention as novel biofungicides. Their exploitation requires safe and cost-effective producing biofactories. Previously, Penicillium chrysogenum and Penicillium digitatum produced recombinant AFPs with the use of a P. chrysogenum-based expression system that consisted of the paf gene promoter, signal peptide (SP)-pro sequence and terminator. Here, the regulatory elements of the afpA gene encoding the highly produced PeAfpA from Penicillium expansum were developed as an expression system for AFP production through the FungalBraid platform. The afpA cassette was tested to produce PeAfpA and P. digitatum PdAfpB in P. chrysogenum and P. digitatum, and its efficiency was compared to that of the paf cassette. Recombinant PeAfpA production was only achieved using the afpA cassette, being P. chrysogenum a more efficient biofactory than P. digitatum. Conversely, P. chrysogenum only produced PdAfpB under the control of the paf cassette. In P. digitatum, both expression systems allowed PdAfpB production, with the paf cassette resulting in higher protein yields. Interestingly, these results did not correlate with the performance of both promoters in a luciferase reporter system. In conclusion, AFP production is a complex outcome that depends on the regulatory sequences driving afp expression, the fungal biofactory and the AFP sequence.

10.1111/1751-7915.14006http://hdl.handle.net/10261/261612