6533b872fe1ef96bd12d38b5

RESEARCH PRODUCT

Time-like Proton Form Factors with Initial State Radiation Technique

Alaa DbeyssiDexu LinFrank Maas

subject

time-likePhysics and Astronomy (miscellaneous)Chemistry (miscellaneous)General Mathematicselectromagnetic form factorsQA1-939Computer Science (miscellaneous)Computer Science::Programming Languagesinitial state radiationHigh Energy Physics::ExperimentComputer Science::Digital LibrariesMathematicsproton

description

Electromagnetic form factors are fundamental quantities describing the internal structure of hadrons. They can be measured with scattering processes in the space-like region and annihilation processes in the time-like region. The two regions are connected by crossing symmetry. The measurements of the proton electromagnetic form factors in the time-like region using the initial state radiation technique are reviewed. Recent experimental studies have shown that initial state radiation processes at high luminosity electron-positron colliders can be effectively used to probe the electromagnetic structure of hadrons. The BABAR experiment at the B-factory PEP-II in Stanford and the BESIII experiment at BEPCII (an electron positron collider in the τ-charm mass region) in Beijing have measured the time-like form factors of the proton using the initial state radiation process e+e−→pp¯γ. The two kinematical regions where the photon is emitted from the initial state at small and large polar angles have been investigated. In the first case, the photon is in the region not covered by the detector acceptance and is not detected. The Born cross section and the proton effective form factor have been measured over a wide and continuous range of the the momentum transfer squared q2 from the threshold up to 42 (GeV/c)2. The ratio of electric and magnetic form factors of the proton has been also determined. In this report, the theoretical aspect and the experimental studies of the initial state radiation process e+e−→pp¯γ are described. The measurements of the Born cross section and the proton form factors obtained in these analyses near the threshold region and in the relatively large q2 region are examined. The experimental results are compared to the predictions from theory and models. Their impact on our understanding of the nucleon structure is discussed.

https://doi.org/10.3390/sym14010091