6533b873fe1ef96bd12d4912
RESEARCH PRODUCT
Autonomous acquisition of natural language
E. NivelK. R. ThórissonB. R. SteunebrinkH. DindoGiovanni PezzuloM. RodriguezC. HernandezD. OgnibeneJ. SchmidhuberR. SanzH. P. HelgasonA. ChellaG. K. Jonssonsubject
Natural languageCommunicationComputer Science (all)Robótica e Informática IndustrialKnowledge acquisitionAutonomydescription
An important part of human intelligence is the ability to use language. Humans learn how to use language in a society of language users, which is probably the most effective way to learn a language from the ground up. Principles that might allow an artificial agents to learn language this way are not known at present. Here we present a framework which begins to address this challenge. Our auto-catalytic, endogenous, reflective architecture (AERA) supports the creation of agents that can learn natural language by observation. We present results from two experiments where our S1 agent learns human communication by observing two humans interacting in a realtime mock television interview, using gesture and situated language. Results show that S1 can learn multimodal complex language and multimodal communicative acts, using a vocabulary of 100 words with numerous sentence formats, by observing unscripted interaction between the humans, with no grammar being provided to it a priori, and only high-level information about the format of the human interaction in the form of high-level goals of the interviewer and interviewee and a small ontology. The agent learns both the pragmatics, semantics, and syntax of complex sentences spoken by the human subjects on the topic of recycling of objects such as aluminum cans, glass bottles, plastic, and wood, as well as use of manual deictic reference and anaphora.
year | journal | country | edition | language |
---|---|---|---|---|
2014-01-01 |