6533b874fe1ef96bd12d611b
RESEARCH PRODUCT
Recruitment of Xrn1 to stress-induced genes allows efficient transcription by controlling RNA polymerase II backtracking
Paula AlepuzMaria E. Pérez-martínezJosé E. Pérez-ortínJosé García-martínezsubject
Saccharomyces cerevisiae ProteinsOsmotic shockTranscription GeneticRNA StabilityRNA polymerase IISaccharomyces cerevisiaeBiology03 medical and health sciences0302 clinical medicineTranscription (biology)Gene Expression Regulation FungalRNA MessengerMolecular BiologyGene030304 developmental biology0303 health sciencesMessenger RNABacktrackingRNA FungalCell BiologyCell biologyCrosstalk (biology)Cytoplasm030220 oncology & carcinogenesisExoribonucleasesbiology.proteinRNA Polymerase IIResearch Paperdescription
A new paradigm has emerged proposing that the crosstalk between nuclear transcription and cytoplasmic mRNA stability keeps robust mRNA levels in cells under steady-state conditions. A key piece in this crosstalk is the highly conserved 5′–3′ RNA exonuclease Xrn1, which degrades most cytoplasmic mRNAs but also associates with nuclear chromatin to activate transcription by not well-understood mechanisms. Here, we investigated the role of Xrn1 in the transcriptional response of Saccharomyces cerevisiae cells to osmotic stress. We show that a lack of Xrn1 results in much lower transcriptional induction of the upregulated genes but in similar high levels of their transcripts because of parallel mRNA stabilization. Unexpectedly, lower transcription in xrn1 occurs with a higher accumulation of RNA polymerase II (RNAPII) at stress-inducible genes, suggesting that this polymerase remains inactive backtracked. Xrn1 seems to be directly implicated in the formation of a competent elongation complex because Xrn1 is recruited to the osmotic stress-upregulated genes in parallel with the RNAPII complex, and both are dependent on the mitogen-activated protein kinase Hog1. Our findings extend the role of Xrn1 in preventing the accumulation of inactive RNAPII at highly induced genes to other situations of rapid and strong transcriptional upregulation.
year | journal | country | edition | language |
---|---|---|---|---|
2020-01-01 |