6533b874fe1ef96bd12d6405
RESEARCH PRODUCT
Nonequilibrium depletion interactions in active microrheology.
Udo SeifertR. WulfertThomas Specksubject
Microrheologyendocrine systemMesoscopic physicsChemistrydigestive oral and skin physiologyNon-equilibrium thermodynamicsGeneral ChemistryCondensed Matter Physicscomplex mixtures01 natural sciences010305 fluids & plasmasSuspension (chemistry)body regionsCondensed Matter::Soft Condensed MatterSuperposition principleColloidClassical mechanicsChemical physics0103 physical sciencesBrownian dynamics010306 general physicsMacromoleculedescription
Entropic depletion forces arise between mesoscopic bodies that are immersed in a suspension of macromolecules, such as colloid-polymer mixtures. Here we consider the case of a driven colloidal probe in the presence of another, passive colloidal particle, both solvated in an ideal bath of small spherical particles. We calculate the nonequilibrium forces mediated by the depletants on the two colloidal particles within a dynamical superposition approximation (DSA) scheme. In order to assess the quality of this approximation, and to obtain the colloidal microstructure around the driven probe, we corroborate our theoretical results with Brownian dynamics simulations.
year | journal | country | edition | language |
---|---|---|---|---|
2017-10-27 | Soft matter |