6533b883fe1ef96bd12dc2c2
RESEARCH PRODUCT
Individual and population-level responses to ocean acidification
Ben P HarveyNiall J MckeownS P S RastrickCamilla BertoliniAndy FoggoHelen GrahamJason M Hall-spencerMarco MilazzoPaul W ShawDaniel SmallPippa J Mooresubject
Ocean Acidification International Coordination Centre (OA-ICC)TemperateRegistration number of speciesSalinityinorganicBottles or small containers/Aquaria (<20 L)AlkalinityExperimentTemperature waterCarbon inorganic dissolvedCalculated using seacarb after Nisumaa et al 2010Aragonite saturation stateRespiration rate oxygenBottles or small containers Aquaria 20 LAlkalinity totalSalinity standard errortotalCO2 ventpHRespirationTemperaturedissolvedCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Field experimentstandard errorCarbon inorganic dissolved standard errorRespiration rateEarth System ResearchSexUniform resource locator link to referencePotentiometric titrationCalcite saturation stateDry masswaterSiteHexaplex trunculusBenthosAlkalinity total standard errorUniform resource locator/link to referenceOcean Acidification International Coordination Centre OA ICCMediterranean SeaAnimaliaTypeBicarbonate ionTemperature water standard errorCalculated using seacarb after Nisumaa et al. (2010)SpeciesWet massBottles or small containers/Aquaria (<20 L)Calculated using CO2SYSCarbonate system computation flagFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonBiomass/Abundance/Elemental compositionTreatmentPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideMolluscaSingle speciesFugacity of carbon dioxide water at sea surface temperature wet airBenthic animalsBiomass Abundance Elemental compositionCoast and continental shelfoxygendescription
Ocean acidification is predicted to have detrimental effects on many marine organisms and ecological processes. Despite growing evidence for direct impacts on specific species, few studies have simultaneously considered the effects of ocean acidification on individuals (e.g. consequences for energy budgets and resource partitioning) and population level demographic processes. Here we show that ocean acidification increases energetic demands on gastropods resulting in altered energy allocation, i.e. reduced shell size but increased body mass. When scaled up to the population level, long-term exposure to ocean acidification altered population demography, with evidence of a reduction in the proportion of females in the population and genetic signatures of increased variance in reproductive success among individuals. Such increased variance enhances levels of short-term genetic drift which is predicted to inhibit adaptation. Our study indicates that even against a background of high gene flow, ocean acidification is driving individual- and population-level changes that will impact eco-evolutionary trajectories.
year | journal | country | edition | language |
---|---|---|---|---|
2016-01-01 |