6533b883fe1ef96bd12dde5f

RESEARCH PRODUCT

High-resolution dynamics of Early Jurassic marine extinctions: the case of Pliensbachian–Toarcian ammonites (Cephalopoda)

Guillaume DeraPascal NeigeJean-louis DommerguesEmmanuel FaraRémi LaffontPierre Pellenard

subject

description

The Pliensbachian–Toarcian interval was marked by major environmental disturbances and by a second-order mass extinction. Here, we reappraise the taxonomic, spatiotemporal and selective dynamics of extinctions over the whole interval, by analysing a high-resolution dataset of 772 ammonite species from NW Tethyan and Arctic domains. On average, 40–65% of ammonite species disappeared during each subchronozone, but higher extinction pulses (reaching 70–90%) prevailed from the Margaritatus to the Dispansum Chronozone. The main extinctions, corresponding to the Gibbosus, Pliensbachian–Toarcian boundary, Semicelatum, Bifrons–Variabilis, and Dispansum events, differed in their dynamics, suggesting episodes of ecological stress related to climate change, regression, disturbance in the carbon cycle or anoxia. The multi-pulsed volcanic activity in the Karoo–Ferrar province could well have triggered these ecological changes. In addition, ammonites experienced a morphological bottleneck during the Gibbosus event, 1 Ma before the Early Toarcian diversity collapse. Typically, drops in richness were related both to high extinctions and to declines in origination rates. This feature could result from strengthened ecological stresses related to the temporal overlap of environmental disturbances. After the Early Toarcian crisis, the recovery of ammonites was rapid (2 Ma) and probably influenced by a coeval marine transgression.

https://dx.doi.org/10.6084/m9.figshare.3454760.v1