Search results for " Algebra"

showing 10 items of 2082 documents

Algebra Without Context Is Empty, Visualizations Without Concepts Are Blind

2018

In the acquisition and formalization of mathematical concepts, the transition between algebraic and geometric representations and the use of different modes of representation contextualizes abstract algebra. Regrettably, the role of geometry is often limited to the visualization of algebraic facts and figurative memory aids. Such visualizations are blind for the underlying concepts, since transitions between concepts in different representations assume the existence of symbols, language, rules and operations in both systems. The history of mathematics offers contexts to develop geometrical language and intuition in areas currently being taught in school in a purely algebraic fashion. The ex…

AlgebraComputer scienceHistory of mathematicsGreek mathematicsContext (language use)Algebraic numberRepresentation (mathematics)Literal and figurative languageEngineering mathematicsAbstract algebra
researchProduct

The History of Algebra in Mathematics Education

2006

In this chapter, we analyse key issues in algebra history from which some lessons can be extracted for the future of the teaching and learning of algebra. A comparative analysis of two types of pre-Vietan languages (before 16th century), and of the corresponding methods to solve problems, leads to conjecture the presence of didactic obstacles of an epistemological origin in the transition from arithmetic to algebraic thinking. This illustrates the value of historic and critical analysis for basic research design in mathematics education. Analysing the interrelationship between different evolution stages of the sign system of symbolic algebra and vernacular language supports the inference th…

AlgebraConjectureMathematics educationPre-algebraBasis (universal algebra)Algebraic numberSymbolic computationValue (semiotics)Sign systemNatural languageMathematics
researchProduct

Geometric Series in Incomplete Normed Algebras

1984

AlgebraDiscrete mathematicsNormed algebraGeometric seriesGeneral MathematicsMathematicsThe American Mathematical Monthly
researchProduct

An Overview on Algebraic Structures

2016

This chapter recaps and formalizes concepts used in the previous sections of this book. Furthermore, this chapter reorganizes and describes in depth the topics mentioned at the end of Chap. 1, i.e. a formal characterization of the abstract algebraic structures and their hierarchy. This chapter is thus a revisited summary of concepts previously introduced and used and provides the mathematical basis for the following chapters.

AlgebraEquivalence class (music)Ring theoryHierarchy (mathematics)Algebraic structureEquivalence relationBasis (universal algebra)Commutative ringCharacterization (mathematics)Mathematics
researchProduct

On the group of the automorphisms of some algebraic systems

1968

Within a framework of general algebra we firstly formulate a proposition on the group of the automorphisms of some irreducible algebrae (id est algebrae without proper non trivial subalgebrae). This proposition includes as particular cases the uniqueness of the automorphisms of the rational field and the Burnside theorem on the commutant of an irreducible set of operators of a finite dimensional vector space over an algebraically closed field. Afterwards we apply the general proposition to modules with irreducible sets of semilinear operators and we obtain a theorem which generalises from several points of view the Burnside theorem. Finally we derive as an application a proposition which sp…

AlgebraGeneral MathematicsUniversal algebraAlgebraic geometryAlgebraic numberAlgebraically closed fieldQuaternionAutomorphismBurnside theoremMathematicsVector spaceANNALI DELL UNIVERSITA DI FERRARA
researchProduct

NeutroAlgebra is a Generalization of Partial Algebra

2020

In this paper we recall, improve, and extend several definitions, properties and applications of our previous 2019 research referred to NeutroAlgebras and AntiAlgebras (also called NeutroAlgebraic Structures and respectively AntiAlgebraic Structures). Let <A> be an item (concept, attribute, idea, proposition, theory, etc.). Through the process of neutrosphication, we split the nonempty space we work on into three regions {two opposite ones corresponding to <A> and <antiA>, and one corresponding to neutral (indeterminate) <neutA> (also denoted <neutroA>) between the opposites}, which may or may not be disjoint – depending on the application, but they are …

AlgebraGeneralizationneutrosophyBC LogicQ01 Interdisciplinary sciences (General)QA Mathematics (General)Partial algebraalgebraAlgebra over a fieldMathematicsInternational Journal of Neutrosophic Science
researchProduct

Pseudodifferential Analysis on Manifolds with Boundary — a Comparison of b-Calculus and Cone Algebra

2001

We establish a relation between two different approaches to a complete pseudodifferential analysis of totally characteristic or Fuchs type operators on compact manifolds with boundary respectively conical singularities: Melrose’s (overblown) b-calculus and Schulze’s cone algebra. Though quite different in their definition, we show that these two pseudodifferential calculi basically contain the same operators.

AlgebraGlobal analysisCone (topology)Mathematics::K-Theory and HomologyRicci-flat manifoldBoundary (topology)Gravitational singularityConical surfaceMathematics::Spectral TheoryType (model theory)MathematicsPoisson algebra
researchProduct

Finite Braid Groups for the SU(2) Knizhnik Zamolodchikov Equation

1995

We consider the monodromy representations of the mapping class group B 4 of the 2-sphere with 4 punctures acting in the solutions space of the zu(2) Knizhnik-Zamolodchikov equation [3] (note that the monodromy representations of the braid group have a more general geometric definition [4]).

AlgebraHigh Energy Physics::TheoryMonodromyMathematics::Quantum AlgebraBraid groupSpace (mathematics)Special unitary groupMapping class groupMathematicsKnizhnik–Zamolodchikov equations
researchProduct

On P-compatible hybrid identities and hyperidentities

1994

P-compatible identities are built up from terms with a special structure. We investigate a variety defined by a set ofP-compatible hybrid identities and answer the question whether a variety defined by a set ofP-compatible hyperidentities can be solid.

AlgebraMathematical logicSet (abstract data type)Structure (mathematical logic)History and Philosophy of ScienceLogicVariety (universal algebra)Computational linguisticsMathematicsStudia Logica
researchProduct

Applied Linear Algebra: Electrical Networks

2016

This chapter shows how mathematical theory is not an abstract subject which has no connection with the real world. On the contrary, this entire book is written by stating that mathematics in general, and algebra in this case, is an integrating part of every day real life and that the professional life of computational scientists and engineers requires a solid mathematical background. In order to show how the contents of the previous chapters have an immediate technical application, the last chapter of this book describes a core engineering subject, i.e. electrical networks, as an algebraic exercise. Furthermore, this chapter shows how the combination of the algebraic topics give a natural r…

AlgebraMathematical theorySet (abstract data type)lawElectrical networkCore (graph theory)Linear algebraConnection (algebraic framework)Algebraic numberRepresentation (mathematics)Mathematicslaw.invention
researchProduct