Search results for " Algorithms"

showing 10 items of 612 documents

Complete, Exact and Efficient Implementation for Computing the Adjacency Graph of an Arrangement of Quadrics

2007

The original publication is available at www.springerlink.com ; ISBN 978-3-540-75519-7 ; ISSN 0302-9743 (Print) 1611-3349 (Online); International audience; We present a complete, exact and efficient implementation to compute the adjacency graph of an arrangement of quadrics, \ie surfaces of algebraic degree~2. This is a major step towards the computation of the full 3D arrangement. We enhanced an implementation for an exact parameterization of the intersection curves of two quadrics, such that we can compute the exact parameter value for intersection points and from that the adjacency graph of the arrangement. Our implementation is {\em complete} in the sense that it can handle all kinds of…

Discrete mathematicsDegree (graph theory)ComputationDegenerate energy levelsACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION/I.1.2: Algorithms/I.1.2.0: Algebraic algorithms020207 software engineering010103 numerical & computational mathematics02 engineering and technology[INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG]01 natural sciencesACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE/G.4.3: EfficiencyCombinatoricsIntersection0202 electrical engineering electronic engineering information engineeringGraph (abstract data type)Adjacency listGravitational singularity0101 mathematicsAlgebraic numberACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE/G.4.0: Algorithm design and analysisMathematics
researchProduct

A formal proof of the ε-optimality of absorbing continuous pursuit algorithms using the theory of regular functions

2014

Published version of an article from the journal: Applied Intelligence. Also available on Springerlink: http://dx.doi.org/10.1007/s10489-014-0541-1 The most difficult part in the design and analysis of Learning Automata (LA) consists of the formal proofs of their convergence accuracies. The mathematical techniques used for the different families (Fixed Structure, Variable Structure, Discretized etc.) are quite distinct. Among the families of LA, Estimator Algorithms (EAs) are certainly the fastest, and within this family, the set of Pursuit algorithms have been considered to be the pioneering schemes. Informally, if the environment is stationary, their ε-optimality is defined as their abili…

Discrete mathematicsDiscretizationLearning automataAbsorbing CPAComputer scienceEstimatorMonotonic functionVDP::Technology: 500::Information and communication technology: 550Mathematical proofFormal proofCPAArbitrarily largeArtificial Intelligenceε-optimalityMartingale (probability theory)Pursuit algorithmsAlgorithm
researchProduct

The Alternating BWT: an algorithmic perspective

2020

Abstract The Burrows-Wheeler Transform (BWT) is a word transformation introduced in 1994 for Data Compression. It has become a fundamental tool for designing self-indexing data structures, with important applications in several areas in science and engineering. The Alternating Burrows-Wheeler Transform (ABWT) is another transformation recently introduced in Gessel et al. (2012) [21] and studied in the field of Combinatorics on Words. It is analogous to the BWT, except that it uses an alternating lexicographical order instead of the usual one. Building on results in Giancarlo et al. (2018) [23] , where we have shown that BWT and ABWT are part of a larger class of reversible transformations, …

Discrete mathematicsFOS: Computer and information sciencesSettore INF/01 - InformaticaGeneral Computer ScienceBasis (linear algebra)Computer scienceAlternating Burrows-Wheeler TransformGalois wordRank-invertibilityField (mathematics)Data structureTheoretical Computer ScienceTransformation (function)Difference cover algorithmComputer Science - Data Structures and AlgorithmsData Structures and Algorithms (cs.DS)Time complexityAlternating Burrows-Wheeler Transform; Difference cover algorithm; Galois word; Rank-invertibilityWord (computer architecture)Data compression
researchProduct

Minimal forbidden words and symbolic dynamics

1996

We introduce a new complexity measure of a factorial formal language L: the growth rate of the set of minimal forbidden words. We prove some combinatorial properties of minimal forbidden words. As main result we prove that the growth rate of the set of minimal forbidden words for L is a topological invariant of the dynamical system defined by L.

Discrete mathematicsFactorial010102 general mathematics[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]Symbolic dynamicsComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)[INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS]0102 computer and information sciencesInvariant (physics)16. Peace & justice01 natural sciencesCombinatorics010201 computation theory & mathematicsTheoryofComputation_LOGICSANDMEANINGSOFPROGRAMSInformation complexityFormal language0101 mathematicsComputer Science::Formal Languages and Automata TheoryComputingMilieux_MISCELLANEOUSMathematicsofComputing_DISCRETEMATHEMATICSMathematics
researchProduct

A Graph Based Algorithm For Intersection Of Subdivision Surfaces

2003

Computing surface intersections is a fundamental problem in geometric modeling. Any boolean operation can be seen as an intersection calculation followed by a selection of the parts necessary for building the surface of the resulting object. A robust and efficient algorithm to compute intersection on subdivision surfaces (surfaces generated by the Loop scheme) is proposed here. This algorithm relies on the concept of a bipartite graph which allows the reduction of the number of faces intersection tests. Intersection computations are accelerated by the use of the bipartite graph and the neighborhood of intersecting faces at a given level of subdivision to deduce intersecting faces at the fol…

Discrete mathematicsFoster graph[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS][INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS][ INFO.INFO-DM ] Computer Science [cs]/Discrete Mathematics [cs.DM][INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]Intersection number (graph theory)Intersection graphlaw.inventionCombinatorics[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]IntersectionlawHomeomorphism (graph theory)Subdivision surfaceCircle graphAlgorithmComputingMilieux_MISCELLANEOUS[ INFO.INFO-DS ] Computer Science [cs]/Data Structures and Algorithms [cs.DS]ComputingMethodologies_COMPUTERGRAPHICSMathematicsDistance-hereditary graph
researchProduct

Machine-Independent Characterizations and Complete Problems for Deterministic Linear Time

2002

This article presents two algebraic characterizations and two related complete problems for the complexity class DLIN that was introduced in [E. Grandjean, Ann. Math. Artif. Intell., 16 (1996), pp. 183--236]. DLIN is essentially the class of all functions that can be computed in linear time on a Random Access Machine which uses only numbers of linear value during its computations. The algebraic characterizations are in terms of recursion schemes that define unary functions. One of these schemes defines several functions simultaneously, while the other one defines only one function. From the algebraic characterizations, we derive two complete problems for DLIN under new, very strict, and mac…

Discrete mathematicsGeneral Computer ScienceUnary operationGeneral Mathematics[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]Recursion (computer science)[INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS]0102 computer and information sciences02 engineering and technologyFunction (mathematics)01 natural sciencesRandom-access machine010201 computation theory & mathematicsCompleteness (order theory)0202 electrical engineering electronic engineering information engineeringComplexity class020201 artificial intelligence & image processingAlgebraic numberTime complexityMathematics
researchProduct

On the hardness of optimization in power-law graphs

2008

Our motivation for this work is the remarkable discovery that many large-scale real-world graphs ranging from Internet and World Wide Web to social and biological networks appear to exhibit a power-law distribution: the number of nodes y"i of a given degree i is proportional to i^-^@b where @b>0 is a constant that depends on the application domain. There is practical evidence that combinatorial optimization in power-law graphs is easier than in general graphs, prompting the basic theoretical question: Is combinatorial optimization in power-law graphs easy? Does the answer depend on the power-law exponent @b? Our main result is the proof that many classical NP-hard graph-theoretic optimizati…

Discrete mathematicsGeneral Computer ScienceVertex coverPower-law graphsGraph construction algorithmsClique (graph theory)Theoretical Computer ScienceCombinatoricsIndifference graphDominating setChordal graphIndependent setNP-hardnessCombinatorial optimizationGraph optimization problemsMaximal independent setMathematicsComputer Science(all)Theoretical Computer Science
researchProduct

Bounds for minimum feedback vertex sets in distance graphs and circulant graphs

2008

Graphs and Algorithms

Discrete mathematicsGeneral Computer Science[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]Neighbourhood (graph theory)[ INFO.INFO-DM ] Computer Science [cs]/Discrete Mathematics [cs.DM][INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS][INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]Feedback arc setTheoretical Computer ScienceCombinatorics[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]Circulant graphChordal graphIndependent setDiscrete Mathematics and CombinatoricsMaximal independent setFeedback vertex setRegular graph[ INFO.INFO-DS ] Computer Science [cs]/Data Structures and Algorithms [cs.DS]MathematicsMathematicsofComputing_DISCRETEMATHEMATICS
researchProduct

Centering and Compound Conditionals under Coherence

2016

There is wide support in logic , philosophy , and psychology for the hypothesis that the probability of the indicative conditional of natural language, \(P(\textit{if } A \textit{ then } B)\), is the conditional probability of B given A, P(B|A). We identify a conditional which is such that \(P(\textit{if } A \textit{ then } B)= P(B|A)\) with de Finetti’s conditional event, B|A. An objection to making this identification in the past was that it appeared unclear how to form compounds and iterations of conditional events. In this paper, we illustrate how to overcome this objection with a probabilistic analysis, based on coherence, of these compounds and iterations. We interpret the compounds a…

Discrete mathematicsIndicative conditionalcenteringSettore MAT/06 - Probabilita' E Statistica Matematica05 social sciencesClassical logicConditional probabilityInference02 engineering and technologyCoherence (philosophical gambling strategy)p-entailmentn-conditional event050105 experimental psychologycoherenceLogical biconditionalp-validity0202 electrical engineering electronic engineering information engineeringbiconditional event020201 artificial intelligence & image processing0501 psychology and cognitive sciencesProbabilistic analysis of algorithmsArithmeticMathematicsEvent (probability theory)Conditional
researchProduct

Periodicity and repetitions in parameterized strings

2008

AbstractOne of the most beautiful and useful notions in the Mathematical Theory of Strings is that of a Period, i.e., an initial piece of a given string that can generate that string by repeating itself at regular intervals. Periods have an elegant mathematical structure and a wealth of applications [F. Mignosi and A. Restivo, Periodicity, Algebraic Combinatorics on Words, in: M. Lothaire (Ed.), Cambridge University Press, Cambridge, pp. 237–274, 2002]. At the hearth of their theory, there are two Periodicity Lemmas: one due to Lyndon and Schutzenberger [The equation aM=bNcP in a free group, Michigan Math. J. 9 (1962) 289–298], referred to as the Weak Version, and the other due to Fine and …

Discrete mathematicsLemma (mathematics)Algebraic combinatoricsCombinatorics on wordsSettore INF/01 - InformaticaApplied MathematicsParameterized complexityParameterized stringsString searching algorithmString (physics)Periodic functionCombinatoricsCombinatorics on wordsDiscrete Mathematics and CombinatoricsString periodicityUniquenessCombinatorics on Words AlgorithmsMathematics
researchProduct