Search results for " Analisi numerica."
showing 10 items of 104 documents
Regularization of optical flow with M-band wavelet transform
2003
The optical flow is an important tool for problems arising in the analysis of image sequences. Flow fields generated by various existing solving techniques are often noisy and partially incorrect, especially near occlusions or motion boundaries. Therefore, the additional information on the scene gained from a sequence of images is usually worse. In this paper, discrete wavelet transform has been adopted in order to enhance the reliability of optical flow estimation. A generalization of the well-known dyadic orthonormal wavelets to the case of the dilation scale factor M > 2 with N vanishing moments has been used, and it has proved to be a useful regularizing tool. The advantages in the comp…
A Mesh-free Particle Method for Transient Full-wave Simulation
2007
A mesh-free particle method is presented for electromagnetic (EM) transient simulation. The basic idea is to obtain numerical solutions for the partial differential equations describing the EM problem in time domain, by using a set of particles, considered as spatial interpolation points of the field variables, arbitrarily placed in the problem domain and by avoiding the use of a regular mesh. Irregular problems geometry with diffused non-homogeneous media can be modeled only with an initial set of arbitrarily distributed particles. The time dependence is accounted for with an explicit finite difference scheme. Moreover the particle discretization can be improved during the process time ste…
Detecting tri‐stability of 3D models with complex attractors via meshfree reconstruction of invariant manifolds of saddle points
2018
In mathematical modeling it is often required the analysis of the vector field topology in order to predict the evolution of the variables involved. When a dynamical system is multi-stable the trajectories approach different stable states, depending on the initialmconditions. The aim of this work is the detection of the invariant manifolds of thesaddle points to analyze the boundaries of the basins of attraction. Once that a sufficient number of separatrix points is found a Moving Least Squares meshfree method is involved to reconstruct the separatrix manifolds. Numerical results are presented to assess the method referring to tri-stable models with complex attractors such as limit cycles o…
An Advanced Numerical Model in Solving Thin-Wire Integral Equations by Using Semi-Orthogonal Compactly Supported Spline Wavelets
2003
Abstract—In this paper, the semi-orthogonal compactly sup- ported spline wavelets are used as basis functions for the efficient solution of the thin-wire electric field integral equation (EFIE) in frequency domain. The method of moments (MoM) is used via the Galerkin procedure. Conventional MoM directly applied to the EFIE, leads to dense matrix which often becomes computation- ally intractable when large-scale problems are approached. To overcome these difficulties, wavelets can be used as a basis set so obtaining the generation of a sparse matrix; this is due to the local supports and the vanishing moments properties of the wavelets. In the paper, this technique is applied to analyze elec…
An advanced numerical treatment of EM absorption in human tissue
2020
The numerical computation of local electromagnetic absorption at points within the human tissue is proposed by avoiding the mesh generation in the problem domain. Recently, meshless numerical methods have been introduced as an alter- native computational approach to mesh based methods. This is an important feature to generate competitive procedure able to provide final evaluations for large data amounts in real time. In this paper the smoothed particle hydrodynamics method is considered to compute the electromagnetic absorption. First experiments are performed in two dimension at single frequencies by considering incident TM plane wave on 2D cylinder simulating a simplified model of human t…
Improved fast Gauss transform for meshfree electromagnetic transients simulations
2019
Abstract In this paper improved fast summations are introduced to enhance a meshfree solver for the evolution of the electromagnetic fields over time. The original method discretizes the time-domain Maxwell’s curl equations via Smoothed Particle Hydrodynamics requiring many summations on the first derivatives of the kernel function and field vectors at each time step. The improved fast Gauss transform is properly adopted picking up the computational cost and the memory requirement at an acceptable level preserving the accuracy of the computation. Numerical simulations in two-dimensional domains are discussed giving evidence of improvements in the computation compared to the standard formula…
An augmented MFS approach for brain activity reconstruction
2017
Abstract Weak electrical currents in the brain flow as a consequence of acquisition, processing and transmission of information by neurons, giving rise to electric and magnetic fields, which can be modeled by the quasi-stationary approximation of Maxwell’s equations. Electroencephalography (EEG) and magnetoencephalography (MEG) techniques allow for reconstructing the cerebral electrical currents and thus investigating the neuronal activity in the human brain in a non-invasive way. This is a typical electromagnetic inverse problem which can be addressed in two stages. In the first one a physical and geometrical representation of the head is used to find the relation between a given source mo…
A Smoothed Particle Interpolation Scheme for Transient Electromagnetic Simulation
2006
In this paper, the fundamentals of a mesh-free particle numerical method for electromagnetic transient simulation are presented. The smoothed particle interpolation methodology is used by considering the particles as interpolation points in which the electromagnetic field components are computed. The particles can be arbitrarily placed in the problem domain: No regular grid, nor connectivity laws among the particles, have to be initially stated. Thus, the particles can be thickened only in distinct confined areas, where the electromagnetic field rapidly varies or in those regions in which objects of complex shape have to be simulated. Maxwell’s equations with the assigned boundary and initi…
Corrective meshless particle formulations for time domain Maxwell's equations
2007
AbstractIn this paper a meshless approximation of electromagnetic (EM) field functions and relative differential operators based on particle formulation is proposed. The idea is to obtain numerical solutions for EM problems by passing up the mesh generation usually required to compute derivatives, and by employing a set of particles arbitrarily placed in the problem domain. The meshless Smoothed Particle Hydrodynamics method has been reformulated for solving the time domain Maxwell's curl equations. The consistency of the discretized model is investigated and improvements in the approximation are obtained by modifying the numerical process. Corrective algorithms preserving meshless consiste…
Lightning-current distribution in MV grids interconnected earthing systems
2017
The paper presents first investigations results on the effects of lightning stroke on medium voltage (MV) installations' earthing systems, connected together with the metal shields of the MV distribution grid cables. The study enables to evaluate the distribution of the lightning current among interconnected earth electrodes in order to assess if the interconnection, usually done for reducing earth potential rise during an earth fault, can give place to dangerous situations far from the installation hit by the lightning stroke. Two case studies of direct lightning stroke are presented and discussed: two interconnected MV substations of the MV grid; a high voltage/medium voltage (HV/MV) stat…