Search results for " Background"

showing 10 items of 316 documents

Limits on tau lepton-flavor violating decays into three charged leptons

2010

A search for the neutrinoless, lepton-flavor violating decay of the tau lepton into three charged leptons has been performed using an integrated luminosity of 468 fb(-1) collected with the BABAR detector at the PEP-II collider. In all six decay modes considered, the numbers of events found in data are compatible with the background expectations. Upper limits on the branching fractions are set in the range (1.8-3.3) x 10(-8) at 90% confidence level.

Nuclear and High Energy PhysicsParticle physicsElectron–positron annihilationBABARFOS: Physical sciencesElementary particletau: branching ratioelectron positron: annihilationmeson01 natural sciencesPARTICLE PHYSICS; PEP2; BABARHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Particle decaytau: leptonic decay; lepton: flavor: violation; tau: branching ratio; BaBar; background; SLAC PEP Stor; electron positron: annihilation; tau: pair production; final state: (0neutrino); upper limit; tau- --> lepton+ 2lepton-; 10.54: 10.58 GeV-cms quark: angular momentum; positron electron --> quark antiquark; excited state; mesonexcited state0103 physical sciencesPEP2[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]10.54: 10.58 GeV-cms quark: angular momentumpositron electron --> quark antiquark010306 general physicsfinal state: (0neutrino)PACS: 13.35.DxFlavorPhysicstau- --> lepton+ 2lepton-tau: pair productionlepton flavor violationbackground010308 nuclear & particles physicsQuark modelHigh Energy Physics::Phenomenologylepton: flavor: violationParticle physicsFermionBABAR detectorSLAC PEP StorHEPCharged particletau: leptonic decayPARTICLE PHYSICSHigh Energy Physics::ExperimentFísica de partículesExperimentsupper limitLeptonPhysical Review D
researchProduct

The neutron background of the XENON100 dark matter search experiment

2013

TheXENON100 experiment, installed underground at the LaboratoriNazionali del Gran Sasso, aims to directly detect dark matter in the form of weakly interacting massive particles (WIMPs) via their elastic scattering off xenon nuclei. This paper presents a study on the nuclear recoil background of the experiment, taking into account neutron backgrounds from (alpha, n) reactions and spontaneous fission due to natural radioactivity in the detector and shield materials, as well as muon-induced neutrons. Based on MonteCarlo simulations and using measured radioactive contaminations of all detector components, we predict the nuclear recoil backgrounds for the WIMP search results published by theXENO…

Nuclear and High Energy PhysicsParticle physicsLarge Underground Xenon experimentPhysics::Instrumentation and DetectorsDark matterGeant4Astrophysics::Cosmology and Extragalactic AstrophysicsWIMP Argon Programme01 natural sciencesNuclear physicsWIMPNuclear and High Energy Physics Neutron Background Dark Matter Search XENON TPC0103 physical sciencesNeutron[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNuclear ExperimentGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)ComputingMilieux_MISCELLANEOUSSpontaneous fissionPhysicsElastic scatteringFluxMuons010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsDetectorsWeakly interacting massive particlesHigh Energy Physics::ExperimentSimulation
researchProduct

Measurement of the intrinsic electron neutrino component in the T2K neutrino beam with the ND280 detector

2014

The T2K experiment has reported the first observation of the appearance of electron neutrinos in a muon neutrino beam. The main and irreducible background to the appearance signal comes from the presence in the neutrino beam of a small intrinsic component of electron neutrinos originating from muon and kaon decays. In T2K, this component is expected to represent 1.2% of the total neutrino flux. A measurement of this component using the near detector (ND280), located 280 m from the target, is presented. The charged current interactions of electron neutrinos are selected by combining the particle identification capabilities of both the time projection chambers and electromagnetic calorimeters…

Nuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciences01 natural sciences7. Clean energyHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsNeutrino oscillationPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyT2K experimentFísicaSolar neutrino problem3. Good healthCosmic neutrino backgroundNeutrino detectorMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrino
researchProduct

Light sterile neutrino sensitivity at the nuSTORM facility

2014

A facility that can deliver beams of electron and muon neutrinos from the decay of a stored muon beam has the potential to unambiguously resolve the issue of the evidence for light sterile neutrinos that arises in short-baseline neutrino oscillation experiments and from estimates of the effective number of neutrino flavors from fits to cosmological data. In this paper, we show that the nuSTORM facility, with stored muons of 3.8 GeV/c $\pm$ 10%, will be able to carry out a conclusive muon neutrino appearance search for sterile neutrinos and test the LSND and MiniBooNE experimental signals with 10$\sigma$ sensitivity, even assuming conservative estimates for the systematic uncertainties. This…

Nuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy & AstrophysicsComputer Science::Digital LibrariesPartícules (Física nuclear)High Energy Physics - ExperimentMiniBooNENuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0201 Astronomical and Space SciencesTOOLKITNeutrino oscillationDETECTOR0206 Quantum PhysicsPhysicsGALLEXScience & Technologyhep-exPhysicsPHYSICS PARTICLES & FIELDSHigh Energy Physics::Phenomenologyhep-phSolar neutrino problemNuclear & Particles PhysicsCosmic neutrino backgroundHigh Energy Physics - PhenomenologyNeutrino detectorPhysical Sciences0202 Atomic Molecular Nuclear Particle and Plasma PhysicsComputer Science::Mathematical SoftwareMeasurements of neutrino speedPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentNeutrinoParticle Physics - Experiment
researchProduct

Quintessence, inflation and baryogenesis from a single pseudo-Nambu-Goldstone boson

2007

15 pages, 3 figures.-- ISI Article Identifier: 000250759700079.-- ArXiv pre-print available at: http://arxiv.org/abs/0707.3999

Nuclear and High Energy PhysicsParticle physicsProton decayCosmic microwave backgroundGenerationFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicssymbols.namesakePlanckBosonPhysicsHigh Energy Physics::PhenomenologyAstrophysics (astro-ph)BaryogenesisFísicaCosmology of Theories beyond the SMWater Cherenkov DetectorBaryogenesisGoldstone bosonLeptogenesissymbolsDark energyHigh Energy Physics::ExperimentQuintessence
researchProduct

Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope

2012

The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximal mixing, a mass …

Nuclear and High Energy PhysicsParticle physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Physics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesddc:500.2Neutrino telescope01 natural sciencesPartícules (Física nuclear)High Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Experiment0103 physical sciencesNeutrinsHigh Energy PhysicsNeutrinos010306 general physicsNeutrino oscillationPhysicsMuonANTARES:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsNeutrino oscillations[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]High Energy Physics::PhenomenologySolar neutrino problemNeutrino astrophysicsCosmic neutrino backgroundNeutrino detectorFISICA APLICADAMeasurements of neutrino speedFísica nuclearHigh Energy Physics::ExperimentNeutrino[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Physics Letters B
researchProduct

A design for an electromagnetic filter for precision energy measurements at the tritium endpoint

2019

We present a detailed description of the electromagnetic filter for the PTOLEMY project to directly detect the Cosmic Neutrino Background (CNB). Starting with an initial estimate for the orbital magnetic moment, the higher-order drift process of E×B is configured to balance the gradient-B drift motion of the electron in such a way as to guide the trajectory into the standing voltage potential along the mid-plane of the filter. As a function of drift distance along the length of the filter, the filter zooms in with exponentially increasing precision on the transverse velocity component of the electron kinetic energy. This yields a linear dimension for the total filter length that is exceptio…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsFOS: Physical sciencesElectron7. Clean energy01 natural sciencesPartícules (Física nuclear)Hamiltonian systemNeutrino massRelic neutrino0103 physical sciencesTransverse drift filter010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)PTOLEMYPhysicsMagnetic moment010308 nuclear & particles physicsCNB; Cosmic Neutrino Background; Neutrino mass; PTOLEMY; Relic neutrino; Transverse drift filterInstrumentation and Detectors (physics.ins-det)CNBFilter (signal processing)CNB; Cosmic Neutrino Background; Neutrino mass; PTOLEMY; Relic neutrino; Transverse drift filter; Nuclear and High Energy PhysicsComputational physicsEnergy conservationHarmonicAstrophysics - Instrumentation and Methods for AstrophysicsNeutrino maEnergy (signal processing)Cosmic Neutrino BackgroundVoltageProgress in Particle and Nuclear Physics
researchProduct

Dark radiation and interacting scenarios

2013

An extra dark radiation component can be present in the universe in the form of sterile neutrinos, axions or other very light degrees of freedom which may interact with the dark matter sector. We derive here the cosmological constraints on the dark radiation abundance, on its effective velocity and on its viscosity parameter from current data in dark radiation-dark matter coupled models. The cosmological bounds on the number of extra dark radiation species do not change significantly when considering interacting schemes. We also find that the constraints on the dark radiation effective velocity are degraded by an order of magnitude while the errors on the viscosity parameter are a factor of…

Nuclear and High Energy PhysicsSterile neutrinoCosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterCosmological parametersCosmic background radiationFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesCosmologyRadiacióPower spectrumsymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010303 astronomy & astrophysicsAxionTelescopeDigital sky surveyPhysicsCosmologiaHubble constant010308 nuclear & particles physicsSpectral densityMicrowave background anisotropiesHigh Energy Physics - Phenomenology13. Climate actionDark radiationConstraintssymbolsHubble's lawAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Updated CMB and x- and gamma-ray constraints on Majoron dark matter

2013

The Majoron provides an attractive dark matter candidate, directly associated with the mechanism responsible for spontaneous neutrino mass generation within the standard model SU(3)(c) circle times SU(2)(L) circle times U(1)(Y) framework. Here we update the cosmological and astrophysical constraints on Majoron dark matter coming from the cosmic microwave background and a variety of x- and gamma-ray observations.

Nuclear and High Energy PhysicsSterile neutrinoParticle physicsAstrophysics::High Energy Astrophysical PhenomenaXMM-newton observationsDark matterCosmic microwave backgroundCosmic background radiationAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics7. Clean energy01 natural sciencesStandard ModelObservational cosmology0103 physical sciences010306 general physicsMajoronPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstrophysics::Instrumentation and Methods for AstrophysicsFísica13. Climate actionSterile neutrinosNeutrino
researchProduct

The energy spectrum of atmospheric neutrinos between 2 and 200 TeV with the AMANDA-II detector

2010

The muon and anti-muon neutrino energy spectrum is determined from 2000-2003 AMANDA telescope data using regularised unfolding. This is the first measurement of atmospheric neutrinos in the energy range 2 - 200 TeV. The result is compared to different atmospheric neutrino models and it is compatible with the atmospheric neutrinos from pion and kaon decays. No significant contribution from charm hadron decays or extraterrestrial neutrinos is detected. The capabilities to improve the measurement of the neutrino spectrum with the successor experiment IceCube are discussed.

Particle physicsAMANDA[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Physics::Instrumentation and Detectors[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Solar neutrinoAstrophysics::High Energy Astrophysical PhenomenaAMANDA; Atmospheric neutrinos; Cherenkov radiation; Neural net; Unfoldingneural netFOS: Physical sciencesAetiology screening and detection [ONCOL 5]01 natural sciences7. Clean energy[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]0103 physical sciences010306 general physicsunfoldingPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Muon010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Cherenkov radiationHigh Energy Physics::PhenomenologyAstronomy and AstrophysicsSolar neutrino problematmospheric neutrinosCosmic neutrino backgroundNeutrino detectorddc:540Measurements of neutrino speedHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsNeutrino astronomyNeutrinoAstrophysics - High Energy Astrophysical Phenomena
researchProduct