Search results for " Bayesian"
showing 10 items of 124 documents
On the convenience of heteroscedasticity in highly multivariate disease mapping
2019
Highly multivariate disease mapping has recently been proposed as an enhancement of traditional multivariate studies, making it possible to perform the joint analysis of a large number of diseases. This line of research has an important potential since it integrates the information of many diseases into a single model yielding richer and more accurate risk maps. In this paper we show how some of the proposals already put forward in this area display some particular problems when applied to small regions of study. Specifically, the homoscedasticity of these proposals may produce evident misfits and distorted risk maps. In this paper we propose two new models to deal with the variance-adaptiv…
Gaussian component mixtures and CAR models in Bayesian disease mapping
2012
Hierarchical Bayesian models involving conditional autoregression (CAR) components are commonly used in disease mapping. An alternative model to the proper or improper CAR is the Gaussian component mixture (GCM) model. A review of CAR and GCM models is provided in univariate settings where only one disease is considered, and also in multivariate situations where in addition to the spatial dependence between regions, the dependence among multiple diseases is analyzed. A performance comparison between models using a set of simulated data to help illustrate their respective properties is reported. The results show that both in univariate and multivariate settings, both models perform in a comp…
Some links between conditional and coregionalized multivariate Gaussian Markov random fields
2020
Abstract Multivariate disease mapping models are attracting considerable attention. Many modeling proposals have been made in this area, which could be grouped into three large sets: coregionalization, multivariate conditional and univariate conditional models. In this work we establish some links between these three groups of proposals. Specifically, we explore the equivalence between the two conditional approaches and show that an important class of coregionalization models can be seen as a large subclass of the conditional approaches. Additionally, we propose an extension to the current set of coregionalization models with some new unexplored proposals. This extension is able to reproduc…
On implementation of the Gibbs sampler for estimating the accuracy of multiple diagnostic tests
2010
Implementation of the Gibbs sampler for estimating the accuracy of multiple binary diagnostic tests in one population has been investigated. This method, proposed by Joseph, Gyorkos and Coupal, makes use of a Bayesian approach and is used in the absence of a gold standard to estimate the prevalence, the sensitivity and specificity of medical diagnostic tests. The expressions that allow this method to be implemented for an arbitrary number of tests are given. By using the convergence diagnostics procedure of Raftery and Lewis, the relation between the number of iterations of Gibbs sampling and the precision of the estimated quantiles of the posterior distributions is derived. An example conc…
Contributed discussion on article by Pratola
2016
The author should be commended for his outstanding contribution to the literature on Bayesian regression tree models. The author introduces three innovative sampling approaches which allow for efficient traversal of the model space. In this response, we add a fourth alternative.
A Decisional Multi-Agent Framework for Automatic Supply Chain Arrangement
2013
In this work, a multi-agent system (MAS) for supply chain dynamic configuration is proposed. The brain of each agent is composed of a Bayesian Decision Network (BDN); this choice allows the agent for taking the best decisions estimating benefits and potential risks of different strategies, analyzing and managing uncertain information about the collaborating companies. Each agent collects information about customer's orders and current market prices, and analyzes previous experiences of collaborations with trading partners. The agent therefore performs a probabilistic inferential reasoning to filter information modeled in its knowledge base in order to achieve the best performance in the sup…
A model of adaptive decision-making from representation of information environment by quantum fields
2017
We present the mathematical model of decision making (DM) of agents acting in a complex and uncertain environment (combining huge variety of economical, financial, behavioral, and geo-political factors). To describe interaction of agents with it, we apply the formalism of quantum field theory (QTF). Quantum fields are of the purely informational nature. The QFT-model can be treated as a far relative of the expected utility theory, where the role of utility is played by adaptivity to an environment (bath). However, this sort of utility-adaptivity cannot be represented simply as a numerical function. The operator representation in Hilbert space is used and adaptivity is described as in quantu…
Soluciones bioinformáticas para el análisis de datos ómicos, descubrimiento de conocimiento y diagnóstico genético en Sparus aurata y otros organismo…
2023
Esta tesis ha sido financiada por el Ministerio de Ciencia e Innovación a través de la ayuda “DI-17-09134” para contratos para la formación de doctores en empresas (Doctorados Industriales). Con el incremento de datos generados mediante el uso de las tecnologías de secuenciación, es necesario el diseño de protocolos y herramientas que permitan el análisis y la integración de los mismos con el objetivo de entender y comprender los sistemas biológicos que forman parte de cada estudio en particular. Estas herramientas, además, es preferible que sean intuitivas y de fácil manejo para los usuarios, de manera que puedan ser utilizadas por cualquier investigador y no solamente por aquellos que sea…
Generalized Bayesian pursuit: A novel scheme for multi-armed Bernoulli bandit problems
2011
Published version of a chapter in the book: IFIP Advances in Information and Communication Technology. Also available from the publisher at: http;//dx.doi.org/10.1007/978-3-642-23960-1_16 In the last decades, a myriad of approaches to the multi-armed bandit problem have appeared in several different fields. The current top performing algorithms from the field of Learning Automata reside in the Pursuit family, while UCB-Tuned and the ε -greedy class of algorithms can be seen as state-of-the-art regret minimizing algorithms. Recently, however, the Bayesian Learning Automaton (BLA) outperformed all of these, and other schemes, in a wide range of experiments. Although seemingly incompatible, in…
Analysis and modeling of wind directions time series
2013
This work aims at studying some aspects of wind directions in Italy and supplying appropriate models. A comparison is presented between independent mixture and Hidden Markov models, which seem to be appropriate as far as the series we studied.