Search results for " Bayesian"

showing 10 items of 124 documents

On the convenience of heteroscedasticity in highly multivariate disease mapping

2019

Highly multivariate disease mapping has recently been proposed as an enhancement of traditional multivariate studies, making it possible to perform the joint analysis of a large number of diseases. This line of research has an important potential since it integrates the information of many diseases into a single model yielding richer and more accurate risk maps. In this paper we show how some of the proposals already put forward in this area display some particular problems when applied to small regions of study. Specifically, the homoscedasticity of these proposals may produce evident misfits and distorted risk maps. In this paper we propose two new models to deal with the variance-adaptiv…

Statistics and ProbabilityHeteroscedasticityMultivariate statisticsComputer scienceDiseaseJoint analysisMachine learningcomputer.software_genreBayesian statistics01 natural sciencesGaussian Markov random fields010104 statistics & probability03 medical and health sciences0302 clinical medicineHomoscedasticity0101 mathematicsMultivariate disease mappingSpatial analysisMortality studiesInterpretation (logic)Spatial statisticsbusiness.industryBayesian statisticsEstadística bayesianaMalalties030211 gastroenterology & hepatologyArtificial intelligenceStatistics Probability and Uncertaintybusinesscomputer
researchProduct

Gaussian component mixtures and CAR models in Bayesian disease mapping

2012

Hierarchical Bayesian models involving conditional autoregression (CAR) components are commonly used in disease mapping. An alternative model to the proper or improper CAR is the Gaussian component mixture (GCM) model. A review of CAR and GCM models is provided in univariate settings where only one disease is considered, and also in multivariate situations where in addition to the spatial dependence between regions, the dependence among multiple diseases is analyzed. A performance comparison between models using a set of simulated data to help illustrate their respective properties is reported. The results show that both in univariate and multivariate settings, both models perform in a comp…

Statistics and ProbabilityMultivariate statisticsApplied MathematicsGaussianBayesian probabilityUnivariateVariable-order Bayesian networkComputational Mathematicssymbols.namesakeComputational Theory and MathematicsAutoregressive modelStatisticsRange (statistics)symbolsEconometricsSpatial dependenceMathematicsComputational Statistics & Data Analysis
researchProduct

Some links between conditional and coregionalized multivariate Gaussian Markov random fields

2020

Abstract Multivariate disease mapping models are attracting considerable attention. Many modeling proposals have been made in this area, which could be grouped into three large sets: coregionalization, multivariate conditional and univariate conditional models. In this work we establish some links between these three groups of proposals. Specifically, we explore the equivalence between the two conditional approaches and show that an important class of coregionalization models can be seen as a large subclass of the conditional approaches. Additionally, we propose an extension to the current set of coregionalization models with some new unexplored proposals. This extension is able to reproduc…

Statistics and ProbabilityMultivariate statisticsClass (set theory)Random fieldMarkov chainComputer science0208 environmental biotechnologyUnivariateMultivariate normal distribution02 engineering and technologyManagement Monitoring Policy and Law01 natural sciences020801 environmental engineering010104 statistics & probabilityEstadística bayesianaDiscriminative modelMalaltiesEconometrics0101 mathematicsComputers in Earth SciencesEquivalence (measure theory)Spatial Statistics
researchProduct

On implementation of the Gibbs sampler for estimating the accuracy of multiple diagnostic tests

2010

Implementation of the Gibbs sampler for estimating the accuracy of multiple binary diagnostic tests in one population has been investigated. This method, proposed by Joseph, Gyorkos and Coupal, makes use of a Bayesian approach and is used in the absence of a gold standard to estimate the prevalence, the sensitivity and specificity of medical diagnostic tests. The expressions that allow this method to be implemented for an arbitrary number of tests are given. By using the convergence diagnostics procedure of Raftery and Lewis, the relation between the number of iterations of Gibbs sampling and the precision of the estimated quantiles of the posterior distributions is derived. An example conc…

Statistics and Probabilityeducation.field_of_studygastroesophageal reflux diseaseBayesian probabilityPopulationGold standard (test)Settore FIS/03 - Fisica Della MateriaGibbs sampler; Bayesian analysis; convergence diagnostics; diagnostic tests; gastroesophageal reflux diseaseSettore MED/01 - Statistica MedicaData setsymbols.namesakediagnostic testGibbs samplerConvergence (routing)Statisticsconvergence diagnosticsymbolsSensitivity (control systems)Statistics Probability and UncertaintyeducationAlgorithmBayesian analysiQuantileMathematicsGibbs samplingJournal of Applied Statistics
researchProduct

Contributed discussion on article by Pratola

2016

The author should be commended for his outstanding contribution to the literature on Bayesian regression tree models. The author introduces three innovative sampling approaches which allow for efficient traversal of the model space. In this response, we add a fourth alternative.

Statistics and Probabilitymodel selectionMarkov Chain Monte Carlo (MCMC)Bayesian regression treeComputer scienceBig dataBayesian regression tree (BRT) modelsComputingMilieux_LEGALASPECTSOFCOMPUTINGbirth–death processMachine learningcomputer.software_genreSequential Monte Carlo methods01 natural sciencespopulation Markov chain Monte Carlo010104 statistics & probabilitysymbols.namesakebig data0502 economics and businessBayesian Regression Trees (BART)0101 mathematics050205 econometrics Bayesian treed regressionMultiple Try Metropolis algorithmsINFERÊNCIA ESTATÍSTICAbusiness.industryApplied MathematicsModel selection05 social sciencesRejection samplingData scienceVariable-order Bayesian networkTree (data structure)Tree traversalMarkov chain Monte Carlocontinuous time Markov processsymbolsArtificial intelligencebusinessBayesian linear regressioncommunication-freecomputerGibbs samplingBayesian Analysis
researchProduct

A Decisional Multi-Agent Framework for Automatic Supply Chain Arrangement

2013

In this work, a multi-agent system (MAS) for supply chain dynamic configuration is proposed. The brain of each agent is composed of a Bayesian Decision Network (BDN); this choice allows the agent for taking the best decisions estimating benefits and potential risks of different strategies, analyzing and managing uncertain information about the collaborating companies. Each agent collects information about customer's orders and current market prices, and analyzes previous experiences of collaborations with trading partners. The agent therefore performs a probabilistic inferential reasoning to filter information modeled in its knowledge base in order to achieve the best performance in the sup…

Supply chain managementKnowledge managementOperations researchComputer scienceBusiness processbusiness.industryMulti-agent systemSupply chainProbabilistic logicKnowledge baseFilter (video)Order (exchange)Multi-Agent System Supply Chain Management Bayesian Decision Networksbusiness
researchProduct

A model of adaptive decision-making from representation of information environment by quantum fields

2017

We present the mathematical model of decision making (DM) of agents acting in a complex and uncertain environment (combining huge variety of economical, financial, behavioral, and geo-political factors). To describe interaction of agents with it, we apply the formalism of quantum field theory (QTF). Quantum fields are of the purely informational nature. The QFT-model can be treated as a far relative of the expected utility theory, where the role of utility is played by adaptivity to an environment (bath). However, this sort of utility-adaptivity cannot be represented simply as a numerical function. The operator representation in Hilbert space is used and adaptivity is described as in quantu…

Theoretical computer scienceComputer scienceGeneral MathematicsQuantum dynamicsLadderFOS: Physical sciencesGeneral Physics and AstronomyNumber operatorBayesian inference01 natural sciences050105 experimental psychology010305 fluids & plasmasPhysics and Astronomy (all)symbols.namesakeEngineering (all)0103 physical sciencesMathematics (all)0501 psychology and cognitive sciencesQuantum field theoryQuantumMathematical PhysicsGame theoryExpected utility hypothesis05 social sciencesGeneral EngineeringLaw of total probabilityHilbert spaceMathematical Physics (math-ph)ArticlesQuantum BayesianismsymbolsDecision-makingPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
researchProduct

Soluciones bioinformáticas para el análisis de datos ómicos, descubrimiento de conocimiento y diagnóstico genético en Sparus aurata y otros organismo…

2023

Esta tesis ha sido financiada por el Ministerio de Ciencia e Innovación a través de la ayuda “DI-17-09134” para contratos para la formación de doctores en empresas (Doctorados Industriales). Con el incremento de datos generados mediante el uso de las tecnologías de secuenciación, es necesario el diseño de protocolos y herramientas que permitan el análisis y la integración de los mismos con el objetivo de entender y comprender los sistemas biológicos que forman parte de cada estudio en particular. Estas herramientas, además, es preferible que sean intuitivas y de fácil manejo para los usuarios, de manera que puedan ser utilizadas por cualquier investigador y no solamente por aquellos que sea…

UNESCO::CIENCIAS DE LA VIDA::Genética::Bioinformáticabioinformáticarna-seqhaplotipos víricosmicrobiotabiología de sistemasUNESCO::CIENCIAS DE LA VIDA::Genética::Genómica computacionaltranscriptómicaUNESCO::MATEMÁTICAS::Estadística ::Análisis de datosgenómicaUNESCO::MATEMÁTICAS::Ciencia de los ordenadores::Inteligencia artificialredes bayesianas
researchProduct

Generalized Bayesian pursuit: A novel scheme for multi-armed Bernoulli bandit problems

2011

Published version of a chapter in the book: IFIP Advances in Information and Communication Technology. Also available from the publisher at: http;//dx.doi.org/10.1007/978-3-642-23960-1_16 In the last decades, a myriad of approaches to the multi-armed bandit problem have appeared in several different fields. The current top performing algorithms from the field of Learning Automata reside in the Pursuit family, while UCB-Tuned and the ε -greedy class of algorithms can be seen as state-of-the-art regret minimizing algorithms. Recently, however, the Bayesian Learning Automaton (BLA) outperformed all of these, and other schemes, in a wide range of experiments. Although seemingly incompatible, in…

VDP::Mathematics and natural science: 400::Information and communication science: 420::Algorithms and computability theory: 422VDP::Technology: 500::Information and communication technology: 550Bandit problems estimator algorithms general Bayesian pursuit algorithm Beta distribution conjugate priors
researchProduct

Analysis and modeling of wind directions time series

2013

This work aims at studying some aspects of wind directions in Italy and supplying appropriate models. A comparison is presented between independent mixture and Hidden Markov models, which seem to be appropriate as far as the series we studied.

Wind powerSeries (mathematics)business.industryComputer scienceVariable-order Markov modelWind directionMixture modelMarkov modelIndustrial engineeringdirectional data; wind direction time seriesVariable-order Bayesian networkSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Settore FIS/03 - Fisica Della Materiadirectional dataEconometricswind direction time seriesHidden Markov modelbusiness
researchProduct