Search results for " Bending"
showing 10 items of 63 documents
Analytical prediction of ultimate moment and curvature of RC rectangular sections in compression
2013
This paper presents closed form expressions linking the ultimate bearing capacity to the ultimate curvature of rectangular RC sections subjected to axial load and bending moment acting in one of the two symmetry planes of the section. With respect to possible simplified formulations the following effects are also considered: confinement of the concrete, hardening of the longitudinal reinforcement, and presence of reinforcing bars distributed orthogonally to the neutral axis. The formulation is proposed in dimensional terms after a preliminary definition of the geometrical and mechanical parameters governing the structural response of the class of sections considered. The analytical expressi…
Targeted steel frames by means of innovative moment resisting connections
2021
Abstract The present paper proposes the use of stepped cross section devices on steel frames aiming at reproducing a pre-established target push-over curve. To this aim a Limited Resistance Plastic Device (LRPD) to be inserted along selected structural members is proposed. The following two main specific features for LRPD are required: any elastic flexural stiffness variation of the original selected member must be avoided; an ultimate plastic bending moment value equal to an assigned percentage of the original limit resistance value must be ensured. Steel frames equipped with LRPD are modeled by means of an extension of a recently proposed Fibre Smart Displacement Based (FSDB) beam element…
Bending-Shear interaction domains for externally prestressed concrete girders
2013
In prestressed concrete structures, the evaluation of the safety level is generally carried out by separating the bending moment strength and the shear force capacity. Actually interaction between bending moment (M) and shear force (V) can have significant consequences on evaluations in service life, especially when the ultimate limit state (ULS) is considered. In this paper, the M-V interaction is addressed for prestressed concrete girders, in the cases of both bonded and unbonded prestressing tendons. It can be demonstrated, by drawing the interaction domains (M-V), that a significant reduction of the safety level has to be considered when shear force is evaluated together with bending mo…
Serviceability and Ultimate Safety Checks of SegmentalConcrete Bridges through N-M and M-V Interaction Domains
2015
In current engineering practice, safety checks on serviceability and determinations of ultimate limit states of segmental bridges built by cantilevering are generally performed, either considering separately the contributions of axial force N, bending moment M, and shear force V, or considering the interaction effects through approximate expressions supplied by building codes. During construction stages and service life, the interaction between internal forces can be of fundamental importance in establishing the actual degree of structural safety and, for this reason, a different philosophy for performing checks in segmental bridges is proposed in this paper, plotting N-M and M-V interactio…
Interaction between Longitudinal Shear and Transverse Bending in Prestressed Concrete Box Girders
2017
In box girder bridges, the quantity and distribution of reinforcement to be put in concrete elements of sections can be evaluated only by considering the deformation of the cross section in addition to the longitudinal analysis of the static scheme, establishing the entire state of stress of box sections. This leads to a need to evaluate the interaction between internal forces obtained by the global analysis and the ones obtained by the local analysis of the cross sections. The frame effect implies the elastic deformation of slabs and webs, whereas eccentrically applied loads lead to cross-section distortion with the loss of the box shape. Hence, the reinforcement is strongly influenced by …
Dimensionless analysis of RC rectangular sections under axial load and biaxial bending
2012
This paper proposes a numerical procedure able to provide ultimate curvature and moment domains of rectangular RC sections subjected to combined axial load and biaxial bending. The formulation is carried out in dimensionless terms in order to give results that are valid for classes of sections characterized by the same values of the geometric and mechanical parameters governing the section response. The role of some of these parameters is investigated here. The results show possible correlations linking the actual values of moment and curvature to the values corresponding to two cases of uniaxial bending to be considered separately. © 2012 Elsevier Ltd.
An analysis of interface delamination mechanisms in orthotropic and hybrid fiber-metal composite laminates
2007
Abstract The onset and propagation of interlaminar defects is one of the main damage mechanisms in composite materials. This is even more the case when considering layered materials comprising metallic laminae (typically Aluminium) and FRP laminae. Propagation of delamination mainly depends on the initial crack extension and its loading mode. This work presents some results of a combined analytical–numerical–experimental study on the onset and propagation mechanisms regarding interlaminar defects. Two cases have been analysed in particular, the first consisting of a glass-fibre reinforced epoxy resin laminate, and the second consisting of a hybrid laminate where a lamina of aluminium is lay…
A dissipated energy comparison to evaluate fatigue resistance using 2PB
2012
Flexural fatigue due to repeated traffic loading is a process of cumulative damage and one of the main failure modes of flexible pavement structures. Typically, micro-cracks originate at the bottom of an asphalt concrete layer due to horizontal tensile strains. Micro-cracking starts to propagate towards the upper layers under repeated loading which can lead to pavement failure. Different approaches are usually used to characterise fatigue resistance in asphalt mixtures including the phenomenological approach, the fracture mechanics approach and the dissipated energy approach. This paper presents a comparison of fatigue resistance calculated for different dissipated energy models using 2 Poi…
Innovative straight formulation for plate in bending
2017
In this paper it has been introduced an innovative formulation for evaluating the deflection function of a simply supported plate loaded by uniformly distributed edge moments. Framed into Line Element-less Method, this formulation allows the evaluation of solution in terms of deflection, through few lines of algorithm implemented by Mathematica software without resorting to any discretization neither in the domain nor in the boundary. Interesting savings in terms of time and computational costs are achieved. Results obtained by the proposed method are well contrasted by ones obtained by classical methods and Finite Element Method.
On the long-term response of elastic-perfectly plastic solids to dynamic cyclic loads
1992
It is shown that the long-term response of an elastic-perfectly plastic solid subjected to dynamic actions cyclically varying in time is characterized by stresses, plastic strain rates and velocities that are all periodic with the same period of the external actions, and are in perfect analogy with the quasi-static case; on the other hand, plastic strains and displacements are in general nonperiodic (except in case of alternating plasticity) and may increase indefinitely (except when elastic or plastic shakedown occurs). Besides, the work performed by the external actions in the steady cycle equals the work performed by the elastic stresses (i.e. pertaining to the elastic response of the bo…