Search results for " Bioreactor"

showing 10 items of 149 documents

Performance of membrane bioreactor (MBR) systems for the treatment of shipboard slops: Assessment of hydrocarbon biodegradation and biomass activity …

2015

In order to prevent hydrocarbon discharge at sea from ships, the International Maritime Organization (IMO) enacted the MARPOL 73/78 convention in which any oil and oil residue discharged in wastewater streams must contain less than 5. ppm hydrocarbons. Effective treatment of this petroleum-contaminated water is essential prior to its release into the environment, in order to prevent pollution problem for marine ecosystems as well as for human health. Therefore, two bench scale membrane bioreactors (MBRs) were investigated for hydrocarbon biodegradation. The two plants were initially fed with synthetic wastewater characterised by an increasing salinity, in order to enhance biomass acclimatio…

PollutionSalinityEnvironmental EngineeringHydrocarbonmedia_common.quotation_subjectOceans and SeaHealth Toxicology and MutagenesisOceans and SeasTPHBioreactorPilot ProjectsBiological Oxygen Demand AnalysisMB-MBR; MBR; Salinity; Slops; TPH; Biological Oxygen Demand Analysis; Carbon; Hydrocarbons; Membranes Artificial; Oceans and Seas; Pilot Projects; Plants; Waste Disposal Fluid; Water Pollutants Chemical; Biodegradation Environmental; Biomass; Bioreactors; Salinity; Environmental Engineering; Environmental Chemistry; Waste Management and Disposal; Pollution; Health Toxicology and MutagenesisMembrane bioreactorWaste Disposal FluidMBRBiomaBioreactorsBioreactorEnvironmental ChemistryPilot ProjectMB-MBRSlopBiomassWaste Management and Disposalmedia_commonchemistry.chemical_classificationBiological Oxygen Demand AnalysisSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleEnvironmental engineeringMembranes ArtificialPlantBiodegradationPlantsPollutionCarbonHydrocarbonsSalinityHydrocarbonBiodegradation EnvironmentalchemistryWastewaterEnvironmental scienceBiological Oxygen Demand AnalysiWater Pollutants Chemical
researchProduct

Treatment of high strength industrial wastewater with membrane bioreactors for water reuse: Effect of pre-treatment with aerobic granular sludge on s…

2019

Abstract In this study, the treatment of citrus wastewater with membrane bioreactors (MBRs) under different configurations was investigated for water reuse. In particular, one MBR and one aerobic granular sludge MBR (AGS + MBR) bench scale plants were operated for 60 days. The experimental campaign was divided into two periods. In Phase I, a conventional hollow fiber MBR was employed for the treatment of the raw high strength wastewater, whereas in Phase II a combination of in-series reactors (AGS + MBR) was adopted for the treatment of the high strength citrus wastewater The results demonstrated that both plant configurations enabled very high COD removal, with average values close to 99%.…

Pre treatmentMembrane Bioreactor02 engineering and technology010501 environmental sciencesReuse01 natural sciencesIndustrial wastewater treatment020401 chemical engineeringfouling tendencyBioreactoraerobic granular sludge0204 chemical engineeringSafety Risk Reliability and QualityWaste Management and Disposal0105 earth and related environmental sciencesFoulingSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleChemistryProcess Chemistry and TechnologyGranule (cell biology)food and beveragesbiokineticPulp and paper industryMembraneWastewaterResistance-In-Series modelcitrus wastewaterBiotechnology
researchProduct

High salinity wastewater treatment by membrane bioreactors

2020

Abstract This chapter reviews the state of the art regarding the use of membrane bioreactor (MBR) systems for saline wastewater treatment. In particular, a comprehensive review is presented discussing the most adopted MBR configurations for the treatment of saline wastewater. Further, the chapter discusses the main effects of salinity on the biological performance, kinetic parameters, fouling development, sludge rheological features, and greenhouse gas (GHG) production. Literature results show that there is a significant effect of the salinity (and/or salinity variations) on the biological performance and membrane filtration. Specifically, it was found that a gradual salinity increase, carr…

Saline wastewater treatmentFoulingSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleFoulingMembrane bioreactorPulp and paper industrylaw.inventionSalinityBiological processMembraneWastewaterlawMicrobial communityBioreactorEnvironmental scienceMembrane bioreactorSewage treatmentFiltration
researchProduct

Comparison between moving bed-membrane bioreactor (MB-MBR) and membrane bioreactor (MBR) systems: Influence of wastewater salinity variation

2014

Two pilot plant systems were investigated for the treatment of wastewater subject to a gradual increase of salinity. In particular, a membrane bioreactor (MBR) and a moving bed biofilm membrane bioreactor (MB-MBR) were analyzed. Carbon and ammonium removal, kinetic constants and membranes fouling rates have been assessed. Both plants showed very high efficiency in terms of carbon and ammonium removal and the gradual salinity increase led to a good acclimation of the biomass, as confirmed by the respirometric tests. Significant biofilm detachments from carriers were experienced, which contributed to increase the irreversible superficial cake deposition. However, this aspect prevented the por…

SalinityEnvironmental EngineeringBiofoulingPilot ProjectsBioengineeringWastewaterMembrane bioreactorWaste Disposal Fluidchemistry.chemical_compoundBiopolymersBioreactorsAmmonium CompoundsElectric ImpedanceAmmoniumBiomassWaste Management and DisposalBiological Oxygen Demand AnalysisSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleFoulingRenewable Energy Sustainability and the EnvironmentMembrane foulingEnvironmental engineeringMembranes ArtificialGeneral MedicineMembrane fouling Saline wastewater MB-MBR RespirometryPulp and paper industrySalinityKineticsPilot plantMembranechemistryWastewaterBiofilmsExtracellular SpaceFiltrationBioresource Technology
researchProduct

Novel dual-flow perfusion bioreactor for in vitro pre-screening of nanoparticles delivery: design, characterization and testing

2021

An advanced dual-flow perfusion bioreactor with a simple and compact design was developed and evaluated as a potential apparatus to reduce the gap between animal testing and drug administration to human subjects in clinical trials. All the experimental tests were carried out using an ad hoc Poly Lactic Acid (PLLA) scaffold synthesized via Thermally Induced Phase Separation (TIPS). The bioreactor shows a tunable radial flow throughout the microporous matrix of the scaffold. The radial perfusion was quantified both with permeability tests and with a mathematical model, applying a combination of Darcy's Theory, Bernoulli's Equation, and Poiseuille's Law. Finally, a diffusion test allowed to in…

ScaffoldMaterials sciencePolymersDiffusionNanoparticleBiocompatible MaterialsBioengineeringIn Vitro Techniques3D ScaffoldBioreactorsFluid dynamicsPolymeric fluorescent nanoparticlesBioreactorAnimalsHumansDual-flow perfusion bioreactorPorosityDrug CarriersSettore ING-IND/24 - Principi Di Ingegneria ChimicaTissue EngineeringTunable radial flowSettore ING-IND/34 - Bioingegneria IndustrialeGeneral MedicineMicroporous materialHagen–Poiseuille equationSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoPermeability (electromagnetism)Microscopy Electron ScanningNanoparticlesBiotechnologyBiomedical engineeringBioprocess and Biosystems Engineering
researchProduct

Enhanced Accumulation of Betulinic Acid in Transgenic Hairy Roots of Senna obtusifolia Growing in the Sprinkle Bioreactor and Evaluation of Their Bio…

2021

Betulinic acid, which is found in transgenic roots of Senna obtusifolia (L.) H.S.Irwin & Barneby, is a pentacyclic triterpene with distinctive pharmacological activities. In this study, we report the differences in the content of betulinic acid and selected anthraquinones in transgenic S. obtusifolia hairy roots with overexpression of the PgSS1 gene (SOPSS2 line) and in transformed hairy roots without this genetic construct (SOA41 line). Both hairy root lines grew in 10 L sprinkle bioreactor. Additionally, the extracts obtained from this plant material were used for biological tests. Our results demonstrated that the SOPSS2 hairy root cultures from the bioreactor showed an increase in the c…

Senna PlantTransgeneBioengineeringAnthraquinonesApoptosisMicrobial Sensitivity TestsGram-Positive BacteriaBiochemistryModels BiologicalPlant Rootschemistry.chemical_compoundBioreactorsTriterpeneGene Expression Regulation PlantBetulinic acidCell Line TumorAnthraquinonesGene expressionGram-Negative BacteriaBioreactorHumansAntiviral activityBetulinic AcidMolecular BiologyCell ProliferationPlant Proteinsbcl-2-Associated X Proteinchemistry.chemical_classificationbiologyPlant ExtractsSprinkle bioreactorGeneral ChemistryGeneral Medicinebiology.organism_classificationAntimicrobialPlants Genetically ModifiedBiodiversitatAnticancerchemistryBiochemistryGlucosyltransferasesTransgenic hairy rootsMolecular MedicineAntimicrobialGene expressionTumor Suppressor Protein p53Senna obtusifoliaPentacyclic TriterpenesChemistrybiodiversity
researchProduct

The fouling phenomenon in membrane bioreactors: assessment of different strategies for energy saving

2012

Membrane fouling represents one of the major limiting issue for membrane bioreactor (MBR) in the wastewater treatment field. Membrane fouling and high aeration requirement (for inducing shear stress to limit fouling) in MBR systems make the operation of such systems economically demanding due to high energetic costs. Despite several studies on MBR fouling have been performed a comprehensive knowledge on how to reduce membrane fouling and consequently energy saving is still lacking and controversial. The aim of this study is to gain insights on the optimization of the operating conditions in an MBR system. In particular, the influence of the aeration intensity and the durations of filtration…

Settore ICAR/03 - Ingegneria Sanitaria-AmbientaleEnergetic costs integrated MBR model membrane bioreactor
researchProduct

New applications in integrated fixed film activated sludge-membrane bioreactor (IFAS-MBR) systems

2020

Abstract This chapter provides an overview on the development and application of integrated fixed film activated sludge-membrane bioreactor (IFAS-MBR) systems. IFAS-MBRs represent a novel configuration for advanced wastewater treatment, and only a few studies are available in literature. With this aim, the results of some studies on IFAS-MBR systems already published are discussed and compared in this chapter. Literature shows that the influent carbon to nitrogen ratio (C/N) strongly affects the biological process in IFAS-MBR. The organic matter removal efficiency (removed biologically) decreases from 60% to 23.5% with the decrease of influent C/N from 10 to 2 mgCOD mgTN− 1. Nitrogen remova…

Settore ICAR/03 - Ingegneria Sanitaria-AmbientaleFoulingCarbon-to-nitrogen ratioChemistryIFAS-MBRMembrane foulingFoulingMembrane bioreactorRemoval efficiencyBiodegradabilityActivated sludgeWastewaterChemical engineeringBioreactorSewage treatmentEPS
researchProduct

Quantifying sensitivity and uncertainty analysis of a new mathematical model for the evaluation of greenhouse gas emissions from membrane bioreactors

2015

Abstract A new mathematical model able to quantify greenhouse gas (GHG) emissions in terms of carbon dioxide (CO 2 ) and nitrous oxide (N 2 O) for a Membrane Bioreactor (MBR) is presented. The proposed mathematical model is of the Activated Sludge Model (ASM) family and takes into account simultaneously both biological and physical processes (e.g., membrane fouling). An analysis of the key factors and sources of uncertainty influencing GHG emissions is also presented. Specifically, the standardized regression coefficient, the Extended-FAST and a Monte Carlo based method are employed for assessing model factors which influence three performance indicators: effluent quality index, operational…

Settore ICAR/03 - Ingegneria Sanitaria-AmbientaleGlobal warmingMonte Carlo methodMembrane foulingEnvironmental engineeringFiltration and SeparationActivated sludge modelWastewater treatmentMembrane bioreactorBiochemistryMembrane technologyEmissionPilot plantGreenhouse gasEnvironmental scienceGeneral Materials ScienceMaterials Science (all)Emissions; Global warming; Model-based evaluation; Wastewater treatment; Physical and Theoretical Chemistry; Materials Science (all); Biochemistry; Filtration and SeparationModel-based evaluationPhysical and Theoretical ChemistryUncertainty analysis
researchProduct

Membrane Fouling Mitigation in MBR via the Feast–Famine Strategy to Enhance PHA Production by Activated Sludge

2022

Fouling is considered one of the main drawbacks of membrane bioreactor (MBR) technology. Among the main fouling agents, extracellular polymeric substances (EPS) are considered one of the most impactful since they cause the decrease of sludge filterability and decline of membrane flux in the long term. The present study investigated a biological strategy to reduce the membrane-fouling tendency in MBR systems. This consisted of seeding the reactor with activated sludge enriched in microorganisms with polyhydroxyalkanoate (PHA) storage ability and by imposing proper operating conditions to drive the carbon toward intracellular (PHA) rather than extracellular (EPS) accumulation. For that purpos…

Settore ICAR/03 - Ingegneria Sanitaria-AmbientaleProcess Chemistry and Technologyextracellular polymeric substances (EPS) cake layer fouling control membrane bioreactor (MBR) polyhydroxyalkanoate (PHA) resistance in series (RIS) model soluble microbial products (SMP)Chemical Engineering (miscellaneous)Filtration and Separationextracellular polymeric substances (EPS); cake layer; fouling control; membrane bioreactor (MBR); polyhydroxyalkanoate (PHA); resistance in series (RIS) model; soluble microbial products (SMP)Membranes
researchProduct