Search results for " Biosynthesis"

showing 10 items of 317 documents

MOBP levels are regulated by Fyn kinase and affect the morphological differentiation of oligodendrocytes.

2015

Oligodendrocytes are the myelinating glial cells of the central nervous system (CNS). Myelin is formed by extensive wrapping of oligodendroglial processes around axonal segments which ultimately allows a rapid saltatory conduction of action potentials within the CNS and sustains neuronal health. The non-receptor tyrosine kinase Fyn is an important signaling molecule in oligodendrocytes. It controls the morphological differentiation of oligodendrocytes and is an integrator of axon-glial signaling cascades leading to localized synthesis of Myelin Basic Protein (MBP) which is essential for myelin formation. The abundant Myelin-Associated Oligodendrocytic Basic Protein (MOBP) resembles MBP in s…

0301 basic medicineCellular differentiationCentral nervous systemGene ExpressionBiologyProto-Oncogene Proteins c-fyn03 medical and health sciencesMyelinFYNmedicineAnimalsCell ShapeCells CulturedSaltatory conductionCell DifferentiationCell BiologyOligodendrocyteMyelin basic proteinCell biologyMice Inbred C57BLOligodendroglia030104 developmental biologymedicine.anatomical_structurenervous systemBiochemistryProtein Biosynthesisbiology.proteinTyrosine kinaseMyelin ProteinsJournal of cell science
researchProduct

Biocatalytic hydrogenation of the C=C bond in the enone unit of hydroxylated chalcones-process arising from cyanobacterial adaptations.

2018

To verify the hypothesis that cyanobacteria naturally biosynthesising polyphenolic compounds possess an active enzymatic system that enables them to transform these substances, such an ability of the biocatalytic systems of whole cells of these biota was assessed for the first time. One halophilic strain and seven freshwater strains of cyanobacteria representing four of the five taxonomic orders of Cyanophyta were examined to determine the following: (i) whether they contain polyphenols, including flavonoids; (ii) the resistance of their cultures when suppressed by the presence of exogenous hydroxychalcones—precursors of flavonoid biosynthesis and (iii) whether these photoautotrophs can tra…

0301 basic medicineCyanobacteriaStereochemistryHydroxylated chalconesCyanobacteria01 natural sciencesApplied Microbiology and BiotechnologyHydroxylation03 medical and health scienceschemistry.chemical_compoundChalconesbiology010405 organic chemistryfood and beveragesGeneral MedicineCarbon-13 NMRbiology.organism_classification0104 chemical sciencesRegiospecific hydrogenation030104 developmental biologyFlavonoid biosynthesisApplied Microbial and Cell PhysiologychemistryPolyphenolBiocatalysisProton NMRBiocatalysisHydrogenationEnoneBiotechnologyApplied microbiology and biotechnology
researchProduct

Dual role of the RNA helicase DDX5 in post-transcriptional regulation of Myelin Basic Protein in oligodendrocytes

2017

In the central nervous system, oligodendroglial expression of Myelin Basic Protein (MBP) is crucial for the assembly and structure of the myelin sheath. MBP synthesis is tightly regulated in space and time, particularly on the post-transcriptional level. We have identified the DEAD-box RNA helicase DDX5 (alias p68) in a complex with Mbp mRNA in oligodendroglial cells. Expression of DDX5 is highest in progenitor cells and immature oligodendrocytes, where it localizes to heterogeneous populations of cytoplasmic ribonucleoprotein (RNP) complexes associated with Mbp mRNA in the cell body and processes. Manipulation of DDX5 protein amounts inversely affects levels of MBP protein. We present evid…

0301 basic medicineCytoplasmBiologyDEAD-box RNA HelicasesMice03 medical and health scienceschemistry.chemical_compound0302 clinical medicineProtein biosynthesismedicineAnimalsHumansRNA Processing Post-TranscriptionalPost-transcriptional regulationRibonucleoproteinMessenger RNADDX5Myelin Basic ProteinCell BiologyRNA Helicase AOligodendrocyteCell biologyMyelin basic proteinMice Inbred C57BLOligodendroglia030104 developmental biologymedicine.anatomical_structurechemistrybiology.protein030217 neurology & neurosurgeryJournal of Cell Science
researchProduct

GW-Bodies and P-Bodies Constitute Two Separate Pools of Sequestered Non-Translating RNAs

2015

Non-translating RNAs that have undergone active translational repression are culled from the cytoplasm into P-bodies for decapping-dependent decay or for sequestration. Organisms that use microRNA-mediated RNA silencing have an additional pathway to remove RNAs from active translation. Consequently, proteins that govern microRNA-mediated silencing, such as GW182/Gw and AGO1, are often associated with the P-bodies of higher eukaryotic organisms. Due to the presence of Gw, these structures have been referred to as GW-bodies. However, several reports have indicated that GW-bodies have different dynamics to P-bodies. Here, we use live imaging to examine GW-body and P-body dynamics in the early …

0301 basic medicineCytoplasmEmbryologyTranscription GeneticMolecular biologylcsh:MedicineGene ExpressionRNA-binding proteinsRNA-binding proteinBiochemistryBlastulas0302 clinical medicineRNA interferenceDrosophila ProteinsCell Cycle and Cell DivisionSmall nucleolar RNAlcsh:ScienceRNA structureGeneticsMultidisciplinaryDrosophila MelanogasterAnimal ModelsArgonauteLong non-coding RNACell biologyInsectsNucleic acidsRNA silencingCell ProcessesArgonaute ProteinsRNA InterferenceRNA Long NoncodingDrosophilaCellular Structures and OrganellesResearch ArticleArthropodaBiologyResearch and Analysis Methods03 medical and health sciencesModel OrganismsP-bodiesGeneticsAnimalsBlastodermlcsh:REmbryosOrganismsBiology and Life SciencesProteinsRNACell BiologyInvertebratesMicroRNAsMacromolecular structure analysis030104 developmental biologyProtein BiosynthesisRNAlcsh:QProtein Translation030217 neurology & neurosurgeryDevelopmental BiologyPLOS ONE
researchProduct

The exonuclease Xrn1 activates transcription and translation of mRNAs encoding membrane proteins

2019

The highly conserved 5’–3’ exonuclease Xrn1 regulates gene expression in eukaryotes by coupling nuclear DNA transcription to cytosolic mRNA decay. By integrating transcriptome-wide analyses of translation with biochemical and functional studies, we demonstrate an unanticipated regulatory role of Xrn1 in protein synthesis. Xrn1 promotes translation of a specific group of transcripts encoding membrane proteins. Xrn1-dependence for translation is linked to poor structural RNA contexts for translation initiation, is mediated by interactions with components of the translation initiation machinery and correlates with an Xrn1-dependence for mRNA localization at the endoplasmic reticulum, the trans…

0301 basic medicineExonucleaseCell biologySaccharomyces cerevisiae ProteinsTranscription GeneticMolecular biologyScienceRNA StabilityGenetic VectorsGeneral Physics and AstronomyGene Expression02 engineering and technologySaccharomyces cerevisiaeEndoplasmic ReticulumGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health sciencesEukaryotic translationTranscription (biology)Gene Expression Regulation FungalGene expression540 ChemistryProtein biosynthesisRNA MessengerCloning Molecularlcsh:ScienceRegulation of gene expressionMultidisciplinarybiologyChemistryGene Expression ProfilingQMembrane ProteinsTranslation (biology)General Chemistry021001 nanoscience & nanotechnologyRibosomeRecombinant Proteins3. Good healthCell biology030104 developmental biologyMembrane proteinProtein BiosynthesisExoribonucleasesbiology.protein570 Life sciences; biologylcsh:Q0210 nano-technologySignal Transduction
researchProduct

Evolutionary conserved role of eukaryotic translation factor eIF5A in the regulation of actin-nucleating formins

2017

AbstractElongation factor eIF5A is required for the translation of consecutive prolines, and was shown in yeast to translate polyproline-containing Bni1, an actin-nucleating formin required for polarized growth during mating. Here we show that Drosophila eIF5A can functionally replace yeast eIF5A and is required for actin-rich cable assembly during embryonic dorsal closure (DC). Furthermore, Diaphanous, the formin involved in actin dynamics during DC, is regulated by and mediates eIF5A effects. Finally, eIF5A controls cell migration and regulates Diaphanous levels also in mammalian cells. Our results uncover an evolutionary conserved role of eIF5A regulating cytoskeleton-dependent processes…

0301 basic medicineFluorescent Antibody Techniquelcsh:Medicinemacromolecular substancesBiologyArticleMiceEukaryotic cells03 medical and health sciencesEukaryotic translationCell MovementPeptide Initiation FactorsCitosqueletProtein biosynthesisAnimalsProtein Interaction Domains and Motifslcsh:ScienceCytoskeletonActinMultidisciplinaryCèl·lules eucariotesMicrofilament Proteinsfungilcsh:RGene Expression Regulation DevelopmentalRNA-Binding ProteinsTranslation (biology)Biological EvolutionActinsDorsal closureCell biologyElongation factor030104 developmental biologyProtein BiosynthesisForminsMutationbiology.proteinDrosophilalcsh:QEIF5AScientific Reports
researchProduct

Investigating mixotrophic metabolism in the model diatom Phaeodactylum tricornutum.

2017

Diatoms are prominent marine microalgae, interesting not only from an ecological point of view, but also for their possible use in biotechnology applications. They can be cultivated in phototrophic conditions, using sunlight as the sole energy source. Some diatoms, however, can also grow in a mixotrophic mode, wherein both light and external reduced carbon contribute to biomass accumulation. In this study, we investigated the consequences of mixotrophy on the growth and metabolism of the pennate diatom Phaeodactylum tricornutum , using glycerol as the source of reduced carbon. Transcriptomics, metabolomics, metabolic modelling and physiological data combine to indicate that glycerol affect…

0301 basic medicineGlycerol[SDV.OT]Life Sciences [q-bio]/Other [q-bio.OT]LightMetabolic fluxBiologySettore BIO/19 - Microbiologia GeneralePhotosynthesisPhaeodactylum tricornutumGeneral Biochemistry Genetics and Molecular BiologyGlycerolipid03 medical and health sciencesNutrientmixotrophyBotanyMicroalgaeSettore BIO/04 - Fisiologia VegetaleMetabolomics[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biologyphotosynthèse14. Life underwaterPhaeodactylum tricornutumBiomassTranscriptomicsmétabolismemicro-algueDiatomsphotosynthesisPhototrophmarine diatomsfungiCarbon metabolismLipid metabolismArticlesapproche omiquebiology.organism_classificationCarbonTriacylglycerol biosynthesis030104 developmental biologyDiatomBiomass productionLipid metabolismBiochemistryGeneral Agricultural and Biological SciencesEnergy sourcemetabolismMixotrophomics analyses
researchProduct

Muscle and serum metabolomes are dysregulated in colon-26 tumor-bearing mice despite amelioration of cachexia with activin receptor type 2B ligand bl…

2019

Cancer-associated cachexia reduces survival, which has been attenuated by blocking the activin receptor type 2B (ACVR2B) ligands in mice. The purpose of this study was to unravel the underlying physiology and novel cachexia biomarkers by use of the colon-26 (C26) carcinoma model of cancer cachexia. Male BALB/c mice were subcutaneously inoculated with C26 cancer cells or vehicle control. Tumor-bearing mice were treated with vehicle (C26+PBS) or soluble ACVR2B either before (C26+sACVR/b) or before and after (C26+sACVR/c) tumor formation. Skeletal muscle and serum metabolomics analysis was conducted by gas chromatography-mass spectrometry. Cancer altered various biologically functional groups …

0301 basic medicineMaleCachexiaPhysiologyEndocrinology Diabetes and MetabolismActivin Receptors Type IIlihaksetMyostatinMice0302 clinical medicineAmino Acidsta315Activin Receptor Type-2BbiologyOrganophosphatesRecombinant Proteins3. Good healthmedicine.anatomical_structureribosome030220 oncology & carcinogenesismyostatinColonic NeoplasmsMetabolomesyöpätauditC26Metabolic Networks and Pathwaysmedicine.medical_specialtyPhenylalanineCachexia03 medical and health sciencesribosomitPhysiology (medical)Internal medicineCell Line TumormedicineAnimalsskeletal muscleMuscle SkeletalPI3K/AKT/mTOR pathwaybusiness.industrySkeletal muscleCancermedicine.diseaseta3122BlockadeImmunoglobulin Fc Fragments030104 developmental biologyEndocrinologyProtein Biosynthesisbiology.proteinaineenvaihduntatuotteetPyrimidine NucleotidesproteiinitbusinesslihassurkastumasairaudetACVR2BAmerican journal of physiology. Endocrinology and metabolism
researchProduct

Rhodococcus aetherivorans BCP1 as cell factory for the production of intracellular tellurium nanorods under aerobic conditions

2016

Tellurite (TeO3 2−) is recognized as a toxic oxyanion to living organisms. However, mainly anaerobic or facultative-anaerobic microorganisms are able to tolerate and convert TeO3 2− into the less toxic and available form of elemental Tellurium (Te0), producing Te-deposits or Te-nanostructures. The use of TeO3 2−-reducing bacteria can lead to the decontamination of polluted environments and the development of “green-synthesis” methods for the production of nanomaterials. In this study, the tolerance and the consumption of TeO3 2− have been investigated, along with the production and characterization of Te-nanorods by Rhodococcus aetherivorans BCP1 grown under aerobic conditions. Aerobically …

0301 basic medicineMicroorganism030106 microbiologyOxyanionBioengineeringSettore BIO/19 - Microbiologia GeneraleApplied Microbiology and Biotechnology03 medical and health scienceschemistry.chemical_compoundMinimum inhibitory concentrationBiogenic nanostructuresTelluriteRhodococcusFood scienceTellurium nanorodsSettore CHIM/02 - Chimica FisicaNanorods biosynthesisNanotubesbiologyStrain (chemistry)ResearchBiogenic nanostructureNanorods biosynthesiAerobiosiRhodococcus aetherivoranElemental telluriumTellurium nanorodbiology.organism_classificationAerobiosisNanotubeRhodococcus aetherivoranschemistryBiochemistryTelluriumAnaerobic exerciseRhodococcusBacteriaIntracellularRhodococcuBiotechnology
researchProduct

Lipidomics reveals altered biosynthetic pathways of glycerophospholipids and cell signaling as biomarkers of the polycystic ovary syndrome

2017

// Mariona Jove 1, * , Irene Pradas 1, * , Alba Naudi 1, * , Susana Rovira-Llopis 2 , Celia Banuls 2 , Milagros Rocha 2 , Manuel Portero-Otin 1 , Antonio Hernandez-Mijares 2, 3, 4, # , Victor M. Victor 2, 5, # and Reinald Pamplona 1, # 1 Department of Experimental Medicine, Lleida University-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), 25198 Lleida, Spain 2 Foundation for the Promotion of Healthcare and Biomedical Research in the Valencian Community (FISABIO), Service of Endocrinology, University Hospital Dr. Peset, 46017 Valencia, Spain 3 Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, Valencia University, 46010 Valencia, Spain 4 Department of Medicine, …

0301 basic medicineOncologyCell signaling moleculesmedicine.medical_specialtyCell signalingGlycerophospholipidsDiseaseGlycerophospholipidsFree fatty acidsValencian community03 medical and health sciences0302 clinical medicineInternal medicineLipidomicsmedicinelipid de novo biosynthesisglycerophospholipids030219 obstetrics & reproductive medicinebusiness.industryfree fatty acidsLipidomeUniversity hospitalPolycystic ovary030104 developmental biologyOncologyLipidomicscell signaling moleculeslipidomicsbusinessResearch PaperOncotarget
researchProduct