Search results for " Boundary Value Problem"

showing 10 items of 54 documents

Positive solutions for a discrete two point nonlinear boundary value problem with p-Laplacian

2017

Abstract In the framework of variational methods, we use a two non-zero critical points theorem to obtain the existence of two positive solutions to Dirichlet boundary value problems for difference equations involving the discrete p -Laplacian operator.

Difference equationDiscrete boundary value problemTwo solution01 natural sciencesElliptic boundary value problemDirichlet distributionCritical point theory; Difference equations; Discrete boundary value problems; p-Laplacian; Positive solutions; Two solutions; Analysis; Applied MathematicsPositive solutionsymbols.namesakePoint (geometry)Boundary value problem0101 mathematicsMathematicsApplied Mathematics010102 general mathematicsMathematical analysisp-LaplacianAnalysiMixed boundary condition010101 applied mathematicssymbolsp-LaplacianCritical point theoryNonlinear boundary value problemLaplace operatorAnalysis
researchProduct

Multiple solutions for a Sturm-Liouville problem with mixed boundary conditions

2010

Critical points mixed boundary value problems multiple solutions
researchProduct

Lacunary bifurcation for operator equations and nonlinear boundary value problems on ℝN

1991

SynopsisWe consider nonlinear eigenvalue problems of the form Lu + F(u) = λu in a real Hilbert space, where L is a positive self-adjoint linear operator and F is a nonlinearity vanishing to higher order at u = 0. We suppose that there are gaps in the essential spectrum of L and use critical point theory for strongly indefinite functionals to derive conditions for the existence of non-zero solutions for λ belonging to such a gap, and for the bifurcation of such solutions from the line of trivial solutions at the boundary points of a gap. The abstract results are applied to the L2-theory of semilinear elliptic partial differential equations on ℝN. We obtain existence results for the general c…

Nonlinear systemElliptic partial differential equationGeneral MathematicsMathematical analysisEssential spectrumMathematicsofComputing_NUMERICALANALYSISBoundary value problemCompact operatorElliptic boundary value problemPoincaré–Steklov operatorMathematicsTrace operatorProceedings of the Royal Society of Edinburgh: Section A Mathematics
researchProduct

Parallel fictitious domain method for a non‐linear elliptic neumann boundary value problem

1999

Parallelization of the algebraic fictitious domain method is considered for solving Neumann boundary value problems with variable coefficients. The resulting method is applied to the parallel solution of the subsonic full potential flow problem which is linearized by the Newton method. Good scalability of the method is demonstrated on a Cray T3E distributed memory parallel computer using MPI in communication. Copyright © 1999 John Wiley & Sons, Ltd.

Algebra and Number TheoryShooting methodFictitious domain methodApplied MathematicsMathematical analysisNeumann–Dirichlet methodNeumann boundary conditionFree boundary problemBoundary value problemMixed boundary conditionElliptic boundary value problemMathematicsNumerical Linear Algebra with Applications
researchProduct

ON THE UNIT CELL BOUNDARY VALUE PROBLEM WITH MESHLESS FORMULATION FOR MASONRY STRUCTURES

2017

In a generic multi-scale computational homogenization (CH) procedure, the crucial point is the definition and the solution of the Unit Cell (UC) Boundary Value Problem (BVP). The main aspects to be chosen for the formulation of the UC BVP are: (i) geometry; (ii) bound- ary conditions (BCs); (iii) material models; (iv) numerical approximation techniques. All these components play a key-role in the efficiency of the multi-scale procedure. In the present study, the UC BVP is formulated for running bond masonry according to a dis- placement based variational formulation, where the material of the blocks is considered indefi- nitely elastic and the mortar joints are simulated by zero-thickness e…

Meshless Methods Masonry Boundary Value ProblemSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Existence of a unique solution for a third-order boundary value problem with nonlocal conditions of integral type

2021

The existence of a unique solution for a third-order boundary value problem with integral condition is proved in several ways. The main tools in the proofs are the Banach fixed point theorem and the Rus’s fixed point theorem. To compare the applicability of the obtained results, some examples are considered.

QA299.6-433Pure mathematicsintegral boundary conditionsBanach fixed point theoremBanach fixed-point theoremApplied MathematicsFixed-point theoremthird-order nonlinear boundary value problemsGreen’s functionType (model theory)Mathematical proofRus’s fixed point theoremThird ordersymbols.namesakeexistence and uniqueness of solutionsGreen's functionsymbolsBoundary value problemAnalysisMathematicsNonlinear Analysis: Modelling and Control
researchProduct

Weak solutions to Dirichlet boundary value problem driven by p(x)-Laplacian-like operator

2017

We prove the existence of weak solutions to the Dirichlet boundary value problem for equations involving the $p(x)$-Laplacian-like operator in the principal part, with reaction term satisfying a sub-critical growth condition. We establish the existence of at least one nontrivial weak solution and three weak solutions, by using variational methods and critical point theory.

Pure mathematicsApplied MathematicsOperator (physics)010102 general mathematicsdirichlet boundary value problem01 natural sciencesDirichlet distribution010101 applied mathematicssymbols.namesakeSettore MAT/05 - Analisi MatematicaP(x)-Laplacian-like operatorQA1-939symbolsvariable exponent sobolev spaceBoundary value problem0101 mathematics$p(x)$-laplacian-like operatorLaplace operatorMathematicsMathematicsElectronic Journal of Qualitative Theory of Differential Equations
researchProduct

Numerische Behandlung von Verzweigungsproblemen bei gew�hnlichen Differentialgleichungen

1979

We present a new method for the numerical solution of bifurcation problems for ordinary differential equations. It is based on a modification of the classical Ljapunov-Schmidt-theory. We transform the problem of determining the nontrivial branch bifurcating from the trivial solution into the problem of solving regular nonlinear boundary value problems, which can be treated numerically by standard methods (multiple shooting, difference methods).

Oscillation theoryComputational MathematicsShooting methodApplied MathematicsOrdinary differential equationNumerical analysisMathematical analysisBoundary value problemNonlinear boundary value problemStandard methodsBifurcationMathematicsNumerische Mathematik
researchProduct

Three solutions to mixed boundary value problem driven by p(z)-Laplace operator

2021

We prove the existence of at least three weak solutions to a mixed Dirichlet–Neumann boundary value problem for equations driven by the p(z)-Laplace operator in the principal part. Our approach is variational and use three critical points theorems.

Dirichlet–Neumann boundary value problemSettore MAT/05 - Analisi MatematicaGeneral MathematicsMathematical analysisp(z)-Laplace operatorBoundary value problemvariable exponent Sobolev spaceLaplace operatorMathematics
researchProduct

Multiplicity results for asymmetric boundary value problems with indefinite weights

2004

We prove existence and multiplicity of solutions, with prescribed nodal properties, to a boundary value problem of the formu″+f(t,u)=0,u(0)=u(T)=0. The nonlinearity is supposed to satisfy asymmetric, asymptotically linear assumptions involving indefinite weights. We first study some auxiliary half-linear, two-weighted problems for which an eigenvalue theory holds. Multiplicity is ensured by assumptions expressed in terms of weighted eigenvalues. The proof is developed in the framework of topological methods and is based on some relations between rotation numbers and weighted eigenvalues.

lcsh:MathematicsApplied MathematicsMultiplicity resultsMathematical analysis34B15Of the formMultiplicity (mathematics)Mixed boundary conditionlcsh:QA1-939Asymmetric boundary value problem asymptotically linear two-weighted problems eigenvalue theory topological methods rotation number multiplicity resultFree boundary problemBoundary value problemAnalysisMathematicsAbstract and Applied Analysis
researchProduct