Search results for " Boundary Value Problem"
showing 10 items of 54 documents
Positive solutions for a discrete two point nonlinear boundary value problem with p-Laplacian
2017
Abstract In the framework of variational methods, we use a two non-zero critical points theorem to obtain the existence of two positive solutions to Dirichlet boundary value problems for difference equations involving the discrete p -Laplacian operator.
Multiple solutions for a Sturm-Liouville problem with mixed boundary conditions
2010
Lacunary bifurcation for operator equations and nonlinear boundary value problems on ℝN
1991
SynopsisWe consider nonlinear eigenvalue problems of the form Lu + F(u) = λu in a real Hilbert space, where L is a positive self-adjoint linear operator and F is a nonlinearity vanishing to higher order at u = 0. We suppose that there are gaps in the essential spectrum of L and use critical point theory for strongly indefinite functionals to derive conditions for the existence of non-zero solutions for λ belonging to such a gap, and for the bifurcation of such solutions from the line of trivial solutions at the boundary points of a gap. The abstract results are applied to the L2-theory of semilinear elliptic partial differential equations on ℝN. We obtain existence results for the general c…
Parallel fictitious domain method for a non‐linear elliptic neumann boundary value problem
1999
Parallelization of the algebraic fictitious domain method is considered for solving Neumann boundary value problems with variable coefficients. The resulting method is applied to the parallel solution of the subsonic full potential flow problem which is linearized by the Newton method. Good scalability of the method is demonstrated on a Cray T3E distributed memory parallel computer using MPI in communication. Copyright © 1999 John Wiley & Sons, Ltd.
ON THE UNIT CELL BOUNDARY VALUE PROBLEM WITH MESHLESS FORMULATION FOR MASONRY STRUCTURES
2017
In a generic multi-scale computational homogenization (CH) procedure, the crucial point is the definition and the solution of the Unit Cell (UC) Boundary Value Problem (BVP). The main aspects to be chosen for the formulation of the UC BVP are: (i) geometry; (ii) bound- ary conditions (BCs); (iii) material models; (iv) numerical approximation techniques. All these components play a key-role in the efficiency of the multi-scale procedure. In the present study, the UC BVP is formulated for running bond masonry according to a dis- placement based variational formulation, where the material of the blocks is considered indefi- nitely elastic and the mortar joints are simulated by zero-thickness e…
Existence of a unique solution for a third-order boundary value problem with nonlocal conditions of integral type
2021
The existence of a unique solution for a third-order boundary value problem with integral condition is proved in several ways. The main tools in the proofs are the Banach fixed point theorem and the Rus’s fixed point theorem. To compare the applicability of the obtained results, some examples are considered.
Weak solutions to Dirichlet boundary value problem driven by p(x)-Laplacian-like operator
2017
We prove the existence of weak solutions to the Dirichlet boundary value problem for equations involving the $p(x)$-Laplacian-like operator in the principal part, with reaction term satisfying a sub-critical growth condition. We establish the existence of at least one nontrivial weak solution and three weak solutions, by using variational methods and critical point theory.
Numerische Behandlung von Verzweigungsproblemen bei gew�hnlichen Differentialgleichungen
1979
We present a new method for the numerical solution of bifurcation problems for ordinary differential equations. It is based on a modification of the classical Ljapunov-Schmidt-theory. We transform the problem of determining the nontrivial branch bifurcating from the trivial solution into the problem of solving regular nonlinear boundary value problems, which can be treated numerically by standard methods (multiple shooting, difference methods).
Three solutions to mixed boundary value problem driven by p(z)-Laplace operator
2021
We prove the existence of at least three weak solutions to a mixed Dirichlet–Neumann boundary value problem for equations driven by the p(z)-Laplace operator in the principal part. Our approach is variational and use three critical points theorems.
Multiplicity results for asymmetric boundary value problems with indefinite weights
2004
We prove existence and multiplicity of solutions, with prescribed nodal properties, to a boundary value problem of the formu″+f(t,u)=0,u(0)=u(T)=0. The nonlinearity is supposed to satisfy asymmetric, asymptotically linear assumptions involving indefinite weights. We first study some auxiliary half-linear, two-weighted problems for which an eigenvalue theory holds. Multiplicity is ensured by assumptions expressed in terms of weighted eigenvalues. The proof is developed in the framework of topological methods and is based on some relations between rotation numbers and weighted eigenvalues.