Search results for " Boundary Value Problem"
showing 10 items of 54 documents
Types and Multiplicity of Solutions to Sturm–Liouville Boundary Value Problem
2015
We consider the second-order nonlinear boundary value problems (BVPs) with Sturm–Liouville boundary conditions. We define types of solutions and show that if there exist solutions of different types then there exist intermediate solutions also.
Nonlocal Third Order Boundary Value Problems with Solutions that Change Sign
2014
We investigate the existence and the number of solutions for a third order boundary value problem with nonlocal boundary conditions in connection with the oscillatory behavior of solutions. The combination of the shooting method and scaling method is used in the proofs of our main results. Examples are included to illustrate the results.
A Boundary Control Approach to an Optimal Shape Design Problem
1989
Abstract We consider the problem of controlling the coincidence set in connection with an obstacle problem. We shall transform the obtained optimal shape design problem into a boundary control problem with Dirichlet boundary conditions.
Inverse problems for elliptic equations with power type nonlinearities
2021
We introduce a method for solving Calder\'on type inverse problems for semilinear equations with power type nonlinearities. The method is based on higher order linearizations, and it allows one to solve inverse problems for certain nonlinear equations in cases where the solution for a corresponding linear equation is not known. Assuming the knowledge of a nonlinear Dirichlet-to-Neumann map, we determine both a potential and a conformal manifold simultaneously in dimension $2$, and a potential on transversally anisotropic manifolds in dimensions $n \geq 3$. In the Euclidean case, we show that one can solve the Calder\'on problem for certain semilinear equations in a surprisingly simple way w…
The Calderon problem in transversally anisotropic geometries
2016
We consider the anisotropic Calderon problem of recovering a conductivity matrix or a Riemannian metric from electrical boundary measurements in three and higher dimensions. In the earlier work \cite{DKSaU}, it was shown that a metric in a fixed conformal class is uniquely determined by boundary measurements under two conditions: (1) the metric is conformally transversally anisotropic (CTA), and (2) the transversal manifold is simple. In this paper we will consider geometries satisfying (1) but not (2). The first main result states that the boundary measurements uniquely determine a mixed Fourier transform / attenuated geodesic ray transform (or integral against a more general semiclassical…
ON THE UNIT CELL BOUNDARY VALUE PROBLEM WITH MESHLESS FORMULATION FOR MASONRY STRUCTURES
2017
In a generic multi-scale computational homogenization (CH) procedure, the crucial point is the definition and the solution of the Unit Cell (UC) Boundary Value Problem (BVP). The main aspects to be chosen for the formulation of the UC BVP are: (i) geometry; (ii) bound- ary conditions (BCs); (iii) material models; (iv) numerical approximation techniques. All these components play a key-role in the efficiency of the multi-scale procedure. In the present study, the UC BVP is formulated for running bond masonry according to a dis- placement based variational formulation, where the material of the blocks is considered indefi- nitely elastic and the mortar joints are simulated by zero-thickness e…
Three solutions for a mixed boundary value problem involving the one-dimensional p-Laplacian
2004
AbstractThis paper deals with two mixed nonlinear boundary value problems depending on a parameter λ. For each of them we prove the existence of at least three generalized solutions when λ lies in an exactly determined open interval. Usefulness of this information on the interval is then emphasized by means of some consequences. Our main tool is a very recent three critical points theorem stated in [Topol. Methods Nonlinear Anal. 22 (2003) 93–104].
On a mixed boundary value problem involving the p-Laplacian
2011
In this paper we prove the existence of infinitely many solutions for a mixed boundary value problem involving the one dimensional p-Laplacian. A result on the existence of three solutions is also established. The approach is based on multiple critical points theorems.
Types of solutions and multiplicity results for two-point nonlinear boundary value problems
2005
Abstract Two-point boundary value problems for the second-order ordinary nonlinear differential equations are considered. If the respective nonlinear equation can be reduced to a quasi-linear one with a non-resonant linear part and both equations are equivalent in some domain D , and if solutions of the quasi-linear problem lie in D , then the original problem has a solution. We then say that the original problem allows for quasilinearization. We show that a quasi-linear problem has a solution of definite type which corresponds to the type of the linear part. If quasilinearization is possible for essentially different linear parts, then the original problem has multiple solutions.
Lacunary bifurcation for operator equations and nonlinear boundary value problems on ℝN
1991
SynopsisWe consider nonlinear eigenvalue problems of the form Lu + F(u) = λu in a real Hilbert space, where L is a positive self-adjoint linear operator and F is a nonlinearity vanishing to higher order at u = 0. We suppose that there are gaps in the essential spectrum of L and use critical point theory for strongly indefinite functionals to derive conditions for the existence of non-zero solutions for λ belonging to such a gap, and for the bifurcation of such solutions from the line of trivial solutions at the boundary points of a gap. The abstract results are applied to the L2-theory of semilinear elliptic partial differential equations on ℝN. We obtain existence results for the general c…