Search results for " Boundary Value Problem"
showing 10 items of 54 documents
Superconductive and insulating inclusions for linear and non-linear conductivity equations
2015
We detect an inclusion with infinite conductivity from boundary measurements represented by the Dirichlet-to-Neumann map for the conductivity equation. We use both the enclosure method and the probe method. We use the enclosure method to prove partial results when the underlying equation is the quasilinear $p$-Laplace equation. Further, we rigorously treat the forward problem for the partial differential equation $\operatorname{div}(\sigma\lvert\nabla u\rvert^{p-2}\nabla u)=0$ where the measurable conductivity $\sigma\colon\Omega\to[0,\infty]$ is zero or infinity in large sets and $1<p<\infty$.
Morse-Smale index theorems for elliptic boundary deformation problems.
2012
AbstractMorse-type index theorems for self-adjoint elliptic second order boundary value problems arise as the second variation of an energy functional corresponding to some variational problem. The celebrated Morse index theorem establishes a precise relation between the Morse index of a geodesic (as critical point of the geodesic action functional) and the number of conjugate points along the curve. Generalization of this theorem to linear elliptic boundary value problems appeared since seventies. (See, for instance, Smale (1965) [12], Uhlenbeck (1973) [15] and Simons (1968) [11] among others.) The aim of this paper is to prove a Morse–Smale index theorem for a second order self-adjoint el…
Green’s function and existence of solutions for a third-order three-point boundary value problem
2019
The solutions of third-order three-point boundary value problem x‘‘‘ + f(t, x) = 0, t ∈ [a, b], x(a) = x‘(a) = 0, x(b) = kx(η), where η ∈ (a, b), k ∈ R, f ∈ C([a, b] × R, R) and f(t, 0) ≠ 0, are the subject of this investigation. In order to establish existence and uniqueness results for the solutions, attention is focused on applications of the corresponding Green’s function. As an application, also one example is given to illustrate the result. Keywords: Green’s function, nonlinear boundary value problems, three-point boundary conditions, existence and uniqueness of solutions.
Existence of a unique solution for a third-order boundary value problem with nonlocal conditions of integral type
2021
The existence of a unique solution for a third-order boundary value problem with integral condition is proved in several ways. The main tools in the proofs are the Banach fixed point theorem and the Rus’s fixed point theorem. To compare the applicability of the obtained results, some examples are considered.
Attraction d'ondes pour des systèmes à résonance d'ondes contra-propagatives
2011
Wave attraction in counter-propagating waves systems is a general phenomenon that was first established in Physics in the context of the attraction of the polarization between two counter-propagating waves in optical fibers. This phenomenon has been observed experimentally, and its properties were studied through numerical simulations. The models are Hamiltonian hyperbolic systems of partial differential equations, with time-dependent boundary conditions on a finite interval. The underlying mechanism can be traced back to the existence of singular tori in the corresponding stationary equations. In this work we analyze in detail the simplest example in this family of models. We show that mos…
AN APPLICATION OF A FIXED POINT THEOREM FOR NONEXPANSIVE OPERATORS
2014
Abstract. In this note, we present an application of a recent xed point theorem by Ricceri to a two-point boundary value problem. KeyWords and Phrases: Fixed point, nonexpansive operator, two-point boundary value problem. 2010 Mathematics Subject Classi cation: 34K10, 47H09, 47H10.
Ordinary (p_1,...,p_m)-Laplacian system with mixed boundary value
2016
In this paper we prove the existence of multiple weak solutions for an ordinary mixed boundary value system with (p_1,...,p_m)-Laplacian by using recent results of critical points.
Asymptotic behavior of positive solutions of a Dirichlet problem involving supercritical nonlinearities
2013
Functional a posteriori error equalities for conforming mixed approximations of elliptic problems
2014
Optimal control in models with conductive‐radiative heat transfer
2003
In this paper an optimal control problem for the elliptic boundary value problem with nonlocal boundary conditions is considered. It is shown that the weak solutions of the boundary value problem depend smoothly on the control parameter and that the cost functional of the optimal control problem is Frechet differentiable with respect to the control parameter. Optimalus valdymas modeliuose su laidžiu-radioaktyviu šilumos pernešimu Santrauka Darbe nagrinejamas nelokalaus kraštinio uždavinio optimalaus valdymo uždavinys. Parodyta, kad silpnasis kraštinio uždavinio sprendinys tolydžiai priklauso nuo valdomojo parametro, taigi, optimalaus valdymo tikslo funkcija yra diferencijuojama Freše prasme…